MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL (A constituent unit of MAHE, Manipal)

SIXTH SEMESTER BTECH. (E & C) DEGREE END SEMESTER EXAMINATION MAY/JUNE 2024 SUBJECT: SEMICONDUCTOR DEVICE THEORY (ECE 4064), Regular

TIME: 3 HOURS

MAX. MARKS: 50

Instructions to candidates

- Answer **ALL** questions.
- Missing data may be suitably assumed.

Q. No.	Questions	М	CO	CL
1A.	The probability that a state at $E_c + kT$ is occupied by an electron is equal to the probability that a state at E_v - kT is empty. Determine the position of the Fermi energy level as a function of E_c and E_v .	4	1	3
1B.	Determine the thermal-equilibrium electron and hole concentrations at T= 300 K. Assume $N_d = 5 \times 10^{15}$ cm ⁻³ and $N_a = 0$. For (a) Silicon (b) GaAs and (c) Germanium.	3	2	3
1C.	Silicon at T = 300 K is doped with boron atoms such that the concentration of holes is $p_0 = 5 \times 10^{15}$ cm ⁻³ . Determine (i) $E_F - E_V$. (ii) $E_C - E_F$. (iii) n_0 . (iv) Which carrier is the majority carrier? (v) $E_{Fi} - E_F$.	3	1	3
2A.	Germanium is doped with 5×10^{15} donor atoms per cm ³ at T 300 K. The dimensions of the Hall device are d =5 × 10 ⁻³ cm, W =2 × 10 ⁻² cm, and L =10 ⁻¹ cm. The current is $I_x = 250 \mu$ A, the applied voltage is $V_x = 100 \text{ mV}$, and the magnetic flux density is $B_z = 500 \text{ gauss} = 5 \times 10^{-2}$ tesla. Calculate (i) the Hall voltage, (ii) the Hall field, and (iii) the carrier mobility.	4	2	4
2B.	Consider a silicon p-n junction at zero bias and T=300 K, Assume doping concentrations of N_a =10 ¹⁶ cm ⁻³ and N_d =10 ¹⁵ cm ⁻³ . Determine (i) V_{bi} , (ii) x_n , (iii) x_p , (iv) W, (v) E_{max} , (vi) CJ.	3	3	3
2C.	A GaAs p-n junction at T=300 K has impurity doping concentrations of $N_a = 2 \times 10^{16}$ cm ⁻³ and $N_d = 5 \times 10^{15}$ cm ⁻³ . It is determined that the ratio of junction capacitance	3	3	3

	at two reverse-biased voltages is Cj $(V_{R1})/Cj(V_{R2}) = 1.5$, where $V_{R1} 0.5$ V. Determine V_{R2} and depletion width at V_{R2} .			
3A.	Gold is deposited on n-type silicon forming an ideal rectifying junction. The doping concentration is $N_d = 10^{16}$ cm ⁻³ . Assume T=300 K. Determine the theoretical values of (i) φ_{B0} , (ii) V_{bi} , (iii) x_n and E_{max} at $V_R=1$ V.	4	4	3
3B.	Determine the theoretical barrier height, built-in potential barrier, and maximum electric field in a metal-semiconductor diode for zero applied bias. Consider a contact between tungsten and n-type silicon doped to N_d =10 ¹⁶ cm ⁻³ at T=300 K.	3	4	3
3C.	Discuss the metal-semiconductor junction with the appropriate band diagram, considering metal is deposited on n-type silicon and $\phi_M > \phi_S$.	3	4	2
4A.	Consider a GaAs n-channel p-n JFET at T=300 K with Na= 10^{18} cm ⁻³ , Nd= 3×10^{15} cm ⁻³ , and a=0.70 µm. Determine the forward-bias gate voltage required to open a channel region that is 0.10 µm thick with zero drain voltage.	4	4	3
4B.	The Schottky barrier height, ϕ_{Bn} , of a metal–n-GaAs MESFET is 0.90 V. The channel doping is N _d =1.5×10 ¹⁶ cm ⁻³ , and the channel thickness is a=0.5 µm. T=300 K. (i) Calculate the internal pinch-off voltage V _{p0} and the threshold voltage V _T .	3	4	4
	(ii) Determine whether the MESFET is a depletion type or enhancement type.			
4C.	An ideal MOS capacitor with an n polysilicon gate has a silicon dioxide thickness of $t_{ox}=12$ nm on a p-type silicon substrate doped at Na =10 ¹⁶ cm ⁻³ . Given $\phi_{MS}=-1.10V$. Determine the capacitance C_{ox} , C_{FB} , C_{min} , and C_{inv} at (a) f=1 Hz and (b) f=1 MHz.(c) Determine threshold voltage (d) Is the capacitor enhancement mode or depletion mode device.	3	5	3
5A.	Consider a MOS device with a p-type silicon substrate with Na=2×10 ¹⁶ cm ⁻³ . The oxide thickness is t_{ox} =15 nm and the equivalent oxide charge is Q_{ss} =7×10 ¹⁰ cm ⁻² . Calculate the threshold voltage for (a) an n ⁺ polysilicon gate (φ_{MS} =-1.12V) (b) a p ⁺ polysilicon gate (φ_{MS} =+0.28V), and (c) an aluminium gate (φ_{MS} =-0.95V).	4	5	4
5B.	Calculate the aspect ratio W/L of the MOSFET and drain current of MOSFET at V _{GS} =1V. Consider the figure shown below for an n-channel silicon MOSFET at T=300 K, the straight line has a slope of 4×10^{-5} . Assume Cox = 6.9×10^{-8} F /cm ² , $\mu_n = 773$ cm ² /V-s and V _D = 0.10V.	3	5	4

I			1		
5C.		Calculate the body-effect coefficient and the change in the threshold voltage due to an			
		applied source-to-body voltage. Consider an n-channel silicon MOSFET at T=300 K.			
	5C.	Assume the substrate is doped to $N_a=3\times10^{16}$ cm ⁻³ and assume the oxide is silicon	3	5	4
		dioxide with a thickness of tox=20 nm. Let $V_{SB}=1$ V.			