## **Question Paper**

Exam Date & Time: 18-Jun-2024 (02:30 PM - 05:30 PM)



## MANIPAL ACADEMY OF HIGHER EDUCATION

SIXTH SEMESTER B.TECH END SEMESTER MAKEUP EXAMINATIONS, JUNE 2024

## **EMBEDDED SYSTEMS DESIGN [ICT 3271]**

Marks: 50 Duration: 180 mins.

## Answer all the questions.

Instructions to Candidates: Answer ALL questions Missing data may be suitably assumed

| Instructions to Candidates: Answer ALL questions Missing data may be suitably assumed |    |                                                                                                                                                                                                                         |     |  |
|---------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|
| 1)                                                                                    |    | What is an addressing mode? Explain different addressing modes of ARM with an example for each.                                                                                                                         | (5) |  |
|                                                                                       | A) |                                                                                                                                                                                                                         |     |  |
|                                                                                       | B) | What is the role of NIVC controller? Write a C program to read the status of the switch connected to P2.10 (function 1) and display LED connected at P2.1 using external interrupt.                                     | (3) |  |
|                                                                                       | C) | Identify and explain the branch instructions used in the operation of signed numbers.                                                                                                                                   | (2) |  |
| 2)                                                                                    |    | Show how to create 2's complement of a 64-bit data in R0 and R1 register, with lower 32 bit stored in R0. With illustrations in register values explain indexed addressing modes with an offset of 8.                   | (5) |  |
|                                                                                       | A) |                                                                                                                                                                                                                         |     |  |
|                                                                                       | В) | Differentiate between software and hardware mode of ADC operation. Write a C program to enable AD0.2 (P0.5 function 3) in burst mode and display the digital result on LEDs connected to port pins P1.0 to P1.11.       | (3) |  |
|                                                                                       | C) | With an explanation discuss the special function operation of R14 and R15 in ARM.                                                                                                                                       | (2) |  |
| 3)                                                                                    | A) | Interface a 3x3 keyboard with rows connected to pins P2.10-P2.12 and columns connected to pins 1.23-1.25 of a LPC1768 and display the row index (0-2) and column index (0-2) on two multiplexed seven-segment displays? | (5) |  |
|                                                                                       | Λ) |                                                                                                                                                                                                                         |     |  |
|                                                                                       | В) | With an illustration explain Universal Asynchronous Transmitter and Receiver (UART), and pins used for transmission and reception.                                                                                      | (3) |  |
|                                                                                       | C) | Assume the content of the register R0=-2 and R1=5. What is the content of all the registers after the execution of an instruction SMULL R3, R4, R0, R1.                                                                 | (2) |  |
| 4)                                                                                    |    | Write a program to generate a sawtooth waveform of frequency 1KHz and peak to peak amplitude of 3V using DAC.                                                                                                           | (5) |  |
|                                                                                       | A) |                                                                                                                                                                                                                         |     |  |
|                                                                                       | В) | Illustrate, with a clear diagram, the process of interfacing a stepper motor with an ARM controller. Additionally, write an embedded C program that rotates the stepper motor 80 steps in the anticlockwise direction.  | (3) |  |
|                                                                                       | C) | Explain the following instructions with example for each                                                                                                                                                                | (2) |  |
|                                                                                       |    | i. ASR ii. RRX .                                                                                                                                                                                                        |     |  |

| 5) | Explain the following registers used in Timers                                                                                                                            | (5) |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| A) | External Match Registers                                                                                                                                                  |     |
| ,  | 2. Capture Control Registers                                                                                                                                              |     |
|    | 3. Match Control Registers                                                                                                                                                |     |
|    | 4. Counter/Timer control registers                                                                                                                                        |     |
|    | 5. Timer Control Register.                                                                                                                                                |     |
| B) | Consider R1= 0x100, with memory map illustration show the position of R1 after the execution of LDMDB R1!,{R2, R3}. Additionally, describe the working of ascending stack | (3) |
| C) | With a neat diagram explain actuator interfacing to the IoT Network                                                                                                       | (2) |
|    | End                                                                                                                                                                       |     |