

DEPARTMENT OF MECHATRONICS VI SEMESTER B. TECH (MECHATRONICS) End Semester Make up Examination June 2024

Subject: Artificial Intelligence Time: 180 Minutes Date of examination: 22 June 2024

Subject Code: MTE 4059 Exam Time: 2:30 PM to 5:30 PM MAX. MARKS: 50

Instructions to Candidates:

* Answer ALL the questions.

• Missing data may be suitably assumed and justified.

		М	CO	РО	LO	BL
1A	Illustrate the architecture of deep cascade forward backpropagation (DCFBP) neural network model for predicting the engine performance and emission (BSFC, BSEC, BTE, UHC, CO, NO _x , Smoke Density) of a CI engine. Also, enlist and explain the performance parameters used for the analysis of the of the DCFBP	4	1	1	1	4
	neural network.					
1B	Assemble the FFBP ANN model architecture for total coliform removal in a sequential batch reactor-based WWTP employing an intermittent cycle extended aeration system. The influent parameters include pH, COD, BOD, TSS, TKN, O&G, AN, TP, FC, and TC. Define the performance metrics that were employed to evaluate the FFBP ANN model.	4	1	1	3	4
1C	Examine and contrast the Mini-Batch Gradient Descent with the Batch Gradient Descent.	2	2	2	2	4
2A	Explain and compare the Momentum based gradient descent and Nesterov accelerated gradient descent.	5	2	2	2	4
2B	Given a set of input values (x_1, x_2, x_3) and corresponding weights (w_1, w_2, w_3) , compute the output of a McCulloch-Pitts neuron using a threshold activation function.	3	1	1	1	3
2C	Explain Xavier and He's initialization and provide the weight initialization equations for logistic, hyperbolic tangent, and normal distributions, as well as the ReLU activation function.	2	2	2	3	4
3A	Illustrate the architecture of AlexNet with the help of block diagram and furnish full details. Enlist the advantages and limitation of AlexNet for the Image classification.	4	3	2	3	3

3B	Given the input data, Calculate the output of the pooling layer considering a scenario with 2x2 max pooling and a stride of 1. Compare and contrast the resulting output representations in terms of dimensionality reduction and feature preservation.	4	3	2	2	3
	y 181 237 170 223 229 181 89 108 109 93 48 66 158 21 71 14 Figure 3B					
3C	Evaluate the significance and multifaceted role of privacy within the context of an information society, considering its implications for individual rights, societal norms, and technological advancements.	2	5	8	8	4
4A	Explain the architecture of a convolutional neural network (CNN) that uses sliding windows and localization for classification and object identification. Additionally, explain how to assess its effectiveness in identifying background elements, motorbikes, vehicles, and pedestrians.	4	3	2	3	5
4B	Evaluate the following fuzzy relation equations by Mamdani Max-Min composition: If rainfall is 'High', drought is 'Low'. Deduce the drought level when rainfall is very high. Let High (rainfall) = $\{\frac{0.4}{2} + \frac{0.8}{3} + \frac{1}{4}\}$ and Low (drought) = $\{\frac{1}{1} + \frac{0.7}{2} + \frac{0.2}{3}\}$ The universe of discourse for the 'rainfall rate' is <i>X</i> and 'drought level' is <i>Y</i> as $X = \{1, 2, 3, 4\}, Y = \{1, 2, 3\}.$	4	4	1	2	4
4C	Analyze the structure and key elements of a fuzzy inference system (FIS) using a detailed diagram. Elucidate the significance of FIS in facilitating decision-making processes.	2	4	1	1	4
5A	Let <i>x</i> be a linguistic variable that measures a company's employee performance, which takes values from the universe of discourse $U = \{1,2,3,4,5,6,7,8,9,10\}$.	5	4	1	2	4

	Suppose the term set of x includes Excellent, Good, Fair and Bad. The					
	membership functions of these linguistic labels are listed as follows:					
	$\mu_{Excellent} = \{(8, 0.4), (9, 0.6), (10, 1)\}$					
	$\mu_{Good} = \{(6, 0.3), (7, 0.6), (8, 0.9), (9, 1), (10, 1)\}$					
	$\mu_{Fair} = \{(3, 0.4), (4, 0.6), (5, 0.9), (6, 0.9), (7, 0.5), (8, 0.1)\}$					
	$\mu_{Bad} = \{(1,1), (2,0.7), (3,0.6), (4,0.4)\}$					
	Construct the membership functions of the following compound sets:					
	(i) Not bad but not very good					
	(ii) Good but not excellent					
5B	Explain the working principles of the Sugeno Fuzzy Model.	2	4	1	1	3
5C	Evaluate the following fuzzy arithmetic operation $C = A + B$ through extension	3	4	1	2	5
	principal by fuzzifying the function $z(x, y) = x + y$ for the given set.					
	$A = \frac{0}{0} + \frac{0.3}{1} + \frac{0.5}{2} + \frac{0.6}{3} + \frac{0.7}{4} + \frac{1}{5}$					
	$B = \frac{1}{0} + \frac{0.7}{1} + \frac{0.5}{2} + \frac{0.4}{3} + \frac{0.3}{4} + \frac{0}{5}$					