

DEPARTMENT OF MECHATRONICS VI SEMESTER B. TECH (MECHATRONICS)

End Semester Assessment May 2024

Subject: Artificial Intelligence Time: 180 Minutes Date of examination: 6 May 2024 Subject Code: MTE 4059 Exam Time: 2:30 PM to 5:30 PM MAX. MARKS: 50

Instructions to Candidates:

* Answer ALL the questions.

* Missing data may be suitably assumed and justified.

		М	CO	РО	LO	BL
1A	Illustrate the architecture of deep cascade forward backpropagation (DCFBP)	4	1	1	1	4
	neural network model for predicting the effluent quality (BOD, COD, TSS, TKN,					
	AN, TP) of a combined upflow anaerobic sludge blanket and facultative pond.					
	Also analyse the performance of the DCFBP neural network with the help of					
	performance parameters.					
1B	Construct the architecture of FFBP ANN model for faecal coliform removal in an	4	1	1	3	4
	intermittent cycle extended aeration system-sequential batch reactor based					
	WWTP with influent parameters pH, COD, BOD, TSS, TKN, O&G, AN, TP, FC,					
	TC. Explain the performance parameters used to test the performance of the FFBP					
	ANN model.					
1C	Explain Batch Gradient Descent and Mini-Batch Gradient Descent with the	2	2	2	2	4
	implementation's steps.					
2A	Explain the importance of optimizers in NN model training. Illustrate following	5	2	2	2	4
	optimizers with associated mathematical equations: (i) AdaGrad, (ii) RMSprop,					
	(iii) Adam					
2B	Given a set of input values (x_1, x_2, x_3, x_4) and corresponding weights $(w_1, w_2, w_3, w_3, w_4)$	3	1	1	1	3
	w ₄), compute the output of a McCulloch-Pitts neuron using a threshold activation					
	function.					
2C	Explain Xavier and He initialization, List the weight initialization equation for	2	2	2	3	4
	uniform and normal distribution of logistic, hyperbolic tangent and ReLU					
	activation function.					

3A	Illustrate the architecture of YOLO with the help of block diagram and furnish	4	3	2	3	3
	full details. Enlist the advantages and limitation of YOLO for the Real-Time					
	Object Detection.					
3B	Calculate the dimensions of the output volume in a CNN network for Figure 3B(i)	4	3	2	2	3
	and Figure 3B(ii):					
	CONV					
	F=32					
	28 × 28 × 16 5 × 5 × 16					
	Figure 3B(i)					
	CONV					
	F=16.					
	28 × 28 × 192 I × I × 192					
	Figure 3B(ii)					
3C	Distinguish between accountability and responsibility for artificial intelligence-	2	5	8	8	4
3C	Distinguish between accountability and responsibility for artificial intelligence- based application.	2	5	8	8	4
3C 4A	Distinguish between accountability and responsibility for artificial intelligence- based application. Appraise a convolutional neural network (CNN) architecture for object detection	2	5	8	8	4
3C 4A	Distinguish between accountability and responsibility for artificial intelligence- based application. Appraise a convolutional neural network (CNN) architecture for object detection utilizing sliding windows and classification with localization. Evaluate its	2	5	8	8	4
3C 4A	Distinguish between accountability and responsibility for artificial intelligence- based application. Appraise a convolutional neural network (CNN) architecture for object detection utilizing sliding windows and classification with localization. Evaluate its efficacy in detecting pedestrians, cars, motorcycles, and background elements.	2	5	8	8	4
3C 4A 4B	Distinguish between accountability and responsibility for artificial intelligence- based application. Appraise a convolutional neural network (CNN) architecture for object detection utilizing sliding windows and classification with localization. Evaluate its efficacy in detecting pedestrians, cars, motorcycles, and background elements. Evaluate the following fuzzy relation equations by Mamdani Max-Min	2 4 4	5 3 4	8 2 1	8 3 2	4 5 4
3C 4A 4B	Distinguish between accountability and responsibility for artificial intelligence- based application. Appraise a convolutional neural network (CNN) architecture for object detection utilizing sliding windows and classification with localization. Evaluate its efficacy in detecting pedestrians, cars, motorcycles, and background elements. Evaluate the following fuzzy relation equations by Mamdani Max-Min composition: If rainfall is 'High', drought is 'Low'. Deduce the drought level	2 4 4	5 3 4	8 2 1	8 3 2	4 5 4
3C 4A 4B	Distinguish between accountability and responsibility for artificial intelligence- based application. Appraise a convolutional neural network (CNN) architecture for object detection utilizing sliding windows and classification with localization. Evaluate its efficacy in detecting pedestrians, cars, motorcycles, and background elements. Evaluate the following fuzzy relation equations by Mamdani Max-Min composition: If rainfall is 'High', drought is 'Low'. Deduce the drought level when rainfall is very high.	2 4 4	5 3 4	8 2 1	8 3 2	4 5 4
3C 4A 4B	Distinguish between accountability and responsibility for artificial intelligence- based application. Appraise a convolutional neural network (CNN) architecture for object detection utilizing sliding windows and classification with localization. Evaluate its efficacy in detecting pedestrians, cars, motorcycles, and background elements. Evaluate the following fuzzy relation equations by Mamdani Max-Min composition: If rainfall is 'High', drought is 'Low'. Deduce the drought level when rainfall is very high. Let High (rainfall) = $\{\frac{0.5}{2} + \frac{0.8}{3} + \frac{1}{4}\}$ and Low (drought) = $\{\frac{1}{1} + \frac{0.6}{2} + \frac{0.2}{3}\}$	2 4 4	5 3 4	8 2 1	8 3 2	4 5 4
3C 4A 4B	Distinguish between accountability and responsibility for artificial intelligence- based application. Appraise a convolutional neural network (CNN) architecture for object detection utilizing sliding windows and classification with localization. Evaluate its efficacy in detecting pedestrians, cars, motorcycles, and background elements. Evaluate the following fuzzy relation equations by Mamdani Max-Min composition: If rainfall is 'High', drought is 'Low'. Deduce the drought level when rainfall is very high. Let High (rainfall) = $\{\frac{0.5}{2} + \frac{0.8}{3} + \frac{1}{4}\}$ and Low (drought) = $\{\frac{1}{1} + \frac{0.6}{2} + \frac{0.2}{3}\}$ The universe of discourse for the 'rainfall rate' is <i>X</i> and 'drought level' is <i>Y</i> as	2 4 4	5 3 4	8 2 1	8 3 2	4 5
3C 4A 4B	Distinguish between accountability and responsibility for artificial intelligence- based application. Appraise a convolutional neural network (CNN) architecture for object detection utilizing sliding windows and classification with localization. Evaluate its efficacy in detecting pedestrians, cars, motorcycles, and background elements. Evaluate the following fuzzy relation equations by Mamdani Max-Min composition: If rainfall is 'High', drought is 'Low'. Deduce the drought level when rainfall is very high. Let High (rainfall) = $\{\frac{0.5}{2} + \frac{0.8}{3} + \frac{1}{4}\}$ and Low (drought) = $\{\frac{1}{1} + \frac{0.6}{2} + \frac{0.2}{3}\}$ The universe of discourse for the 'rainfall rate' is <i>X</i> and 'drought level' is <i>Y</i> as $X = \{1, 2, 3, 4\}, Y = \{1, 2, 3\}.$	2 4 4	5 3 4	8 2 1	8 3 2	4 5 4
3C 4A 4B 4C	Distinguish between accountability and responsibility for artificial intelligence- based application. Appraise a convolutional neural network (CNN) architecture for object detection utilizing sliding windows and classification with localization. Evaluate its efficacy in detecting pedestrians, cars, motorcycles, and background elements. Evaluate the following fuzzy relation equations by Mamdani Max-Min composition: If rainfall is 'High', drought is 'Low'. Deduce the drought level when rainfall is very high. Let High (rainfall) = $\{\frac{0.5}{2} + \frac{0.8}{3} + \frac{1}{4}\}$ and Low (drought) = $\{\frac{1}{1} + \frac{0.6}{2} + \frac{0.2}{3}\}$ The universe of discourse for the 'rainfall rate' is X and 'drought level' is Y as $X = \{1, 2, 3, 4\}, Y = \{1, 2, 3\}.$ Illustrate the structure and main components of a fuzzy inference system (FIS)	2 4 4 2 2	5 3 4 4	8 2 1 1 1	8 3 2 1	4 5 4 3
3C 4A 4B 4C	Distinguish between accountability and responsibility for artificial intelligence- based application. Appraise a convolutional neural network (CNN) architecture for object detection utilizing sliding windows and classification with localization. Evaluate its efficacy in detecting pedestrians, cars, motorcycles, and background elements. Evaluate the following fuzzy relation equations by Mamdani Max-Min composition: If rainfall is 'High', drought is 'Low'. Deduce the drought level when rainfall is very high. Let High (rainfall) = $\{\frac{0.5}{2} + \frac{0.8}{3} + \frac{1}{4}\}$ and Low (drought) = $\{\frac{1}{1} + \frac{0.6}{2} + \frac{0.2}{3}\}$ The universe of discourse for the 'rainfall rate' is <i>X</i> and 'drought level' is <i>Y</i> as $X = \{1, 2, 3, 4\}, Y = \{1, 2, 3\}.$ Illustrate the structure and main components of a fuzzy inference system (FIS) with a clear diagram. Explain the concept of a fuzzy inference system and its	2 4 4 2 2	5 3 4 4	8 2 1 1 1	8 3 2 1	4 5 4 3
3C 4A 4B 4C	Distinguish between accountability and responsibility for artificial intelligence- based application. Appraise a convolutional neural network (CNN) architecture for object detection utilizing sliding windows and classification with localization. Evaluate its efficacy in detecting pedestrians, cars, motorcycles, and background elements. Evaluate the following fuzzy relation equations by Mamdani Max-Min composition: If rainfall is 'High', drought is 'Low'. Deduce the drought level when rainfall is very high. Let High (rainfall) = $\{\frac{0.5}{2} + \frac{0.8}{3} + \frac{1}{4}\}$ and Low (drought) = $\{\frac{1}{1} + \frac{0.6}{2} + \frac{0.2}{3}\}$ The universe of discourse for the 'rainfall rate' is <i>X</i> and 'drought level' is <i>Y</i> as $X = \{1, 2, 3, 4\}, Y = \{1, 2, 3\}.$ Illustrate the structure and main components of a fuzzy inference system (FIS) with a clear diagram. Explain the concept of a fuzzy inference system and its relevance in decision-making processes.	2 4 4 2 2 2	5 3 4 4	8 2 1 1 1	8 3 2 1	4 5 4 3
3C 4A 4B 4C 5A	Distinguish between accountability and responsibility for artificial intelligence- based application. Appraise a convolutional neural network (CNN) architecture for object detection utilizing sliding windows and classification with localization. Evaluate its efficacy in detecting pedestrians, cars, motorcycles, and background elements. Evaluate the following fuzzy relation equations by Mamdani Max-Min composition: If rainfall is 'High', drought is 'Low'. Deduce the drought level when rainfall is very high. Let High (rainfall) = $\{\frac{0.5}{2} + \frac{0.8}{3} + \frac{1}{4}\}$ and Low (drought) = $\{\frac{1}{1} + \frac{0.6}{2} + \frac{0.2}{3}\}$ The universe of discourse for the 'rainfall rate' is <i>X</i> and 'drought level' is <i>Y</i> as $X = \{1, 2, 3, 4\}, Y = \{1, 2, 3\}.$ Illustrate the structure and main components of a fuzzy inference system (FIS) with a clear diagram. Explain the concept of a fuzzy inference system and its relevance in decision-making processes. Let <i>x</i> be a linguistic variable that measures a company's employee performance,	2 4 4 2 5	5 3 4 4 4 4	8 2 1 1 1	8 3 2 1 2 2	4 5 4 3 4

	Suppose the term set of <i>x</i> includes Excellent, Good, Fair and Bad. The					
	membership functions of these linguistic labels are listed as follows:					
	$\mu_{Excellent} = \{(8, 0.3), (9, 0.5), (10, 1)\}$					
	$\mu_{Good} = \{(6, 0.2), (7, 0.6), (8, 0.8), (9, 1), (10, 1)\}$					
	$\mu_{Fair} = \{(3, 0.4), (4, 0.6), (5, 0.9), (6, 0.9), (7, 0.5), (8, 0.1)\}$					
	$\mu_{Bad} = \{(1,1), (2,0.8), (3,0.7), (4,0.4)\}$					
	Deduce the membership functions of the following compound sets:					
	(i) Not bad but not very good					
	(ii) Good but not excellent					
5B	Explain Ebrahim Mamdani's Fuzzy Model, outlining the Two Rules of Mamdani	2	4	1	1	3
	with Min and Max Operators, supported by a clear illustration.					
5C	Evaluate the following fuzzy arithmetic operation $C = A + B$ through extension	3	4	1	2	5
	principal by fuzzifying the function $z(x, y) = x + y$ for the given set.					
	$A = \frac{0}{0} + \frac{0.2}{1} + \frac{0.4}{2} + \frac{0.6}{3} + \frac{0.8}{4} + \frac{1}{5}$					
	$B = \frac{1}{0} + \frac{0.8}{1} + \frac{0.6}{2} + \frac{0.4}{3} + \frac{0.2}{4} + \frac{0}{5}$					