DEPARTMENT OF MECHATRONICS VI SEMESTER B. TECH (MECHATRONICS) END-SEMESTER, [May] [2023]

Subject: Robot Dynamics and Control Subject Code: MTE 4060

Exam Time: AM-AM

Time: 3 Hour

Date: -06-2023

Max Marks: 50

Q.	Question	Μ	CO	PO	LO	BL
1A	Model the Zigler - Nichols method to design P, PI, and PID controllers for the transfer function 1/(S+1)(S+2)(S+3).	4	3	1, 2, 3, 4, 9	1, 2, 3, 16	3
1B	Appraise the concept of control law partitioning in the context of position regulation (Linear control).	4	3	1, 2, 3, 4, 9	1, 2, 3, 16	5
ıC	Examine the concept of set point tracking to explain how a controller can be designed to make a system follow a desired trajectory.	2	4	1, 2, 3, 4, 9	1, 2, 16	3
2A	Evaluate the a. gripping force and b. actuation force required to retain and obtain a part respectively, as well as the c. pressure and power required to operate the piston cylinder of a mechanical gripper (Fig. 2A) that uses friction to grasp an object. Where the parameters are given below $W = 45N$, $\mu = 0.5$, $L1 = 72mm$, $L2 = 48mm$, $L3 = 18mm$, $L4 =$ 54mm, Dp (diameter of piston cylinder) = 78mm, z = 1.2, Q = 0.018 m ³ /s, a(accelerating down) = 9.81 m/s ² .	4	2	1, 2, 3, 4	1, 2, 3	5

	Pneumatic cylinder Piston us us us us product Pg Masse (m) Pg					
	Gripper friction Fig. 2A					
2B	Analyze and break down the components of a 2R planar robotic arm in order to derive and explain the Legrangian equation of single arm.	3	3	1, 2, 3, 4, 9	1, 2, 3, 16	4
2C	Identify the concept of Newton-Euler and Lagrange-Euler formulations to enumerate their differences.	3	2	1, 2, 3, 4	1, 2, 3	3
3А	Determine the forward and inverse kinematics of a RPY robotic arm.	4	1	1, 2, 3, 4	1, 2, 3	5
3B	In a robotic system the location of an object with respect to base of the robot is given by ${}^{b}T_{o} = \begin{bmatrix} 1 & 0 & 0 & 5 \\ 0 & -1 & 0 & 8 \\ 0 & 0 & -1 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$, also the gripper is defined with respect to base as given by ${}^{b}T_{g} = \begin{bmatrix} 0 & -1 & 0 & 6 \\ 1 & 0 & 0 & -12 \\ 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 1 \end{bmatrix}$. Appraise the location of object with respect to gripper. Pictorially represent the frames of object and gripper with respect to base.	3	2	1, 2, 3, 4	1, 2, 3	4

3C	Illustrate the selective compliance assembly robotic arm with its work volume and joint notations, also highlight its applications.	3	1	1, 2, 3, 4	1, 2, 3	3
4A	Analyse how Lyapunov stability theorem can be used to explain robot stability.	4	4	1, 2, 3, 4, 9	1, 2, 16	4
4B	Justify the behavior of a nonlinear mechanical spring- damper system described by the equation X'' + b(X') + k(X) = 0. Using appropriate stability theorem. Energy Function => V(X,X') = $\frac{1}{2}$ X' ² + $_{0}$ $\int^{k} k(\lambda) d\lambda$	3	4	1, 2, 3, 4, 9	1, 2, 16	5
4C	Compare and Classify between force/hybrid position control and compliance control.	3	4	1, 2, 3, 4, 9	1, 2, 16	4
5A	Determine the DH parameters for a given configuration of a robot. y_1 y_2 x_1 z_1 x_1 z_2 z_2 y_2 x_2 x_2 x_2 x_2 x_3 x_4 x_5 x_6 Fig. 5A	3	1	1, 2, 3, 4	1, 2, 3	5
5B	Evaluate the trapezoidal profile equations of trajectory planning.	5	1	1, 2, 3, 4	1, 2, 3	5
5C	Identify the required bit storage capacity for the controllers of a Cartesian coordinate robot, when a given control resolution and total range is motion of 0.25mm and 750mm respectively.	2	2	1, 2, 3, 4	1, 2, 3	3