MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

DEPARTMENT OF MECHATRONICS **VI SEMESTER B.TECH. MECHATRONICS**

END SEMESTER EXAMINATION, MAY 2024 SUBJECT: Vehicle Dynamics

Subject Code: MTE 4054

Date: 06/05/2024

Time: 180 Mins

Exam time: 2:30 pm – 5:30 pm MAX. MARKS: 50

* Answer ALL questions.

* Missing data if any, maybe suitably assumed.

Q.		Μ	CO	РО	LO	BL
No.						
1.4	A massameer conversions 20,105 kN and has a wheelhass of 2.8 m. The weight distribution on	5	4	2	2	2
1A.	A passenger car weight 20.103 kiv and has a wheeloase of 2.8 m. The weight distribution of	5	4	2	2	3
	the front axie is 53.5%, and that on the rear axie is 40.5% under static conditions.					
	a) If the cornering stiffness of each of the front tires is 38.92 kN/rad and that of the rear tires					
	is 38.25 kN/rad, determine the steady-state handling behavior of the vehicle.					
	b) If the front tires are replaced by a pair of radial-ply tires, each of which has a cornering					
	stiffness of 47.82 kN/rad and the rear tires remain unchanged, determine the steady-state					
	handling behaviour of the vehicle under these circumstances.					
1B.	Consider an accelerating car on a level road as shown in Figure 1B. Determine the vertical	3	1	2	2	4
	forces acting on the front and rear wheels. (Neglect the aerodynamic, d Alembert's force, and					
	braking force.)					
	$\begin{array}{c} & a_{2} \\ & a_{1} \\ & g \\ & g \\ & f \\ & f \\ & f \\ & g \\ & f \\ & f \\ & f \\ & g \\ & f \\ & f$					
10		-	4		4	
10.	Explain the concept of the roll, pitch, and yaw motions for the vehicle. Along which axis the	2	4	4	4	2
	centrilugal and centripetal forces will act?					
2A.	Consider a parked car on an uphill road (Figure 2A). If the forces under the front and rear	5	1	2	2	4
	wheels are F_{z1} and F_{z2} , then prove that the inclined angle of the road is:					
	$\phi = \arctan\left(\frac{a_2 - a_1 \left(F_{z_1}/F_{z_2}\right)}{h + h \left(F_{z_1}/F_{z_2}\right)}\right)$					

	Fig. 2A					
	(Neglect the aerodynamic, d Alembert's force, and braking force.)					
2B.	Consider a car with the following characteristics:	3	1	2	2	3
	Wheelbase = 2272 mm; the center of gravity is at the center of the car and has a height of 220 mm above the ground level. If the coefficient of friction, $\mu_x = 1$, and the mass of the car, m = 1500 kg. Calculate the minimum time required to reach the speed of 0 – 100 km/hr, assuming that the car is a rear-wheel drive car.					
2C.	A car is parked on a level road. Determine the force on front and rear axles, if $m = 1665$ kg, wheelbase = 2.48 m, the distance between front wheels and center of gravity is 1.35 m. (Neglect the aerodynamic, d Alembert's force, tractive and braking forces, and rolling resistance forces.)	2	1	2	2	3
3A.	Explain the conicity and ply steer effect in a tire.	4	2	4	4	2
3B.	A sports car weighs 9.919 kN and has a wheelbase of 2.26 m. The center of gravity is 1.13 m behind the front axle. The cornering stiffness of each front tire is 58.62 kN/rad and that of each rear tire is 71.36 kN/rad. Determine the steady-state yaw velocity gain and lateral acceleration gain of the vehicle. The forward speed of the vehicle is 90 km/hr.	3	4	2	2	3
3C.	Derive an expression for Ackermann Steering Geometry.	3	4	4	4	3
4A.	A passenger car weighs 21.24 kN and has a wheelbase of 2.87 m. The center of gravity is 1.27 m behind the front axle and 0.508 m above the ground level. The braking effort distribution on the front axle is 60%. The coefficient of rolling resistance is 0.02. Determine which set of tires will lock first on a road surface when the coefficient of road adhesion is: i. $\mu = 0.8$ and ii. $\mu = 0.2$.	5	1	2	2	3
4B.	For steady-state handling characteristics of a two-axle vehicle represented as a Bicycle Model,	3	4	4	4	3
40	derive the expression for cornering forces and slip angles for front and rear wheels.	2	1	1	1	2
40.	Explain anti-squat and anti-dive suspension geometry.	2	1	4	4	2
5A.	The sprung parts of a passenger car weigh 11.12 kN and the unsprung parts weigh 890 N. The combined stiffness of the suspension springs is 45.53 kN/m and that of the tires is 525.35 kN/m. Compute the natural frequencies of the bounce motions of the sprung and un-sprung masses. Also, calculate the amplitudes of the sprung and un-sprung parts if the car travels at a speed of 48 km/h over a road of a sinewave form with a wavelength of 9.15 m and an amplitude of 5 cm.	5	1	2	2	3

5B.	In what way do the wheels of a car (front and rear) get locked up? Why does the rear wheel	3	1	4	4	2
	lockup be a critical situation, particularly on a road with a low coefficient of adhesion?					
5C.	Explain the ISO 2631 standard for the evaluation of vibrational environments in transport and	2	1	4	4	2
	industry vehicles.					