Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

PIREDBY

SECOND SEMESTER M.TECH. (AUTOMOBILE ENGINEERING) END SEMESTER EXAMINATIONS, APRIL- MAY 2024

ADVANCED AUTOMOTIVE DRIVETRAIN SYSTEMS [AAE 5213]

REVISED CREDIT SYSTEM

Time: 3	3 Hours	Date: 30 April 2024	Мах	. Mar	ks: 50
Instruct	tions to Candidates:				
•	Answer ALL the questions.				
•	Missing data may be suitab	ly assumed.			
Q.NO	Questions		Marks	CO	BTL
1A.	A manual transmission used	for a vehicle with data given below has six	(5)	1	4
	forward speeds and the gear ra				
	gear (1.51), 4th gear (1.07), 5th				
	consumption is 275 gr/(kW.hr				
	and 5 th gear. Consider the den				
	following data:				
	Front axle weight	: 800 kg			
	Centre of gravity height	: 45 cm			
	Air drag coefficient	: 0.32			
	Tire radius	: 30 cm			
	Powertrain efficiency	: 0.94			
	Max. power @6000 RPM	: 138 HP			
	Rear axle weight	: 700 kg			
	Wheel base	: 2600 cm.			
	Frontal projected area	$: 2.2 \text{ m}^2$			
	Roll resistance coefficient	: 0.018			
	Traction coefficient	: 1.0			
	Max. torque @4500 RPM	: 80 Nm			
	a) The engine RPM drops by				
	vehicle speed of 72 km/h.				
	b) Determine the engine torq				
	cruising at a constant spee				

5th gears respectively.

c) Determine the fuel economy in litres per 100 km for the conditions in (b).

The equations of gears are;

	Gear ratio $(i_a) = \frac{\Delta \omega (in RPM)}{\omega_W (i_{gl} - i_{gh})}$			
	Resistance (<i>R</i>) = $fW + 0.208554 \times C_D Av^2$ in kgf			
	Engine power $=\frac{Rv}{\eta}g$ in J/s			
	Angular speed corresponding to gear i, $\omega_e{}^{(i)} = i_i i_a \omega_w$			
	$\omega_w = v/r$			
	Torque corresponding to gear i, $T_e^{(i)} = \frac{Rr}{\eta i_i i_a}$			
1 B .	Analyze the benefits of using hydrostatic transmission mechanism over hydrokinetic transmission units like fluid coupling and torque converter.	(3)	3	4
1C.	Suggest a solution to the low load capacity of a single plate clutch.	(2)	2	4
2A.	Illustrate in brief the basic vehicle structure with fundamental components and the use of those.	(5)	1	3
2B.	Explore the working, advantages and disadvantages of Dual Clutch Transmission System.	(5)	4	3
3A.	Demonstrate the working and role of CVT in enhancing the efficiency over Automatic gearbox.	(4)	4	3
3B.	A cone-clutch with a cone semi-angle of 12° is to transmit 11.19 kW at 750 RPM. The width of the face is $1/4^{\text{th}}$ of the mean diameter and the normal pressure between the contact faces is not to exceed 8.27 x 10^4 Pa. Allowing the coefficient of friction of 0.2, determine the main dimensions of the clutch and the axial force required.	(4)	2	4
3C.	Demonstrate the working of transfer case in a 4WD transmission vehicle.	(2)	1	3
4A.	Classify and illustrate in brief the hydrostatic transmission unit according to the transmission ratio.	(5)	3	3
4B.	Explore any technology that eliminates the gear overlap or interference during engagement and disengagement of gears in manual gearbox.	(3)	5	3
4C.	Suggest any technology that improves the efficiency and efficacy of automatic transmission.	(2)	4	5

5A. In an automatic gearbox, single set of planetary geartrain is used, consisting central sun gear S, star shaped planet carrier C carrying 3 planet gears P, rotating between sun and annular gear (internal gear) E. The size of wheels/ gears is such that C rotates at 1/5th of the S gears. The number of teeth on sun gear is 16. Determine number of teeth on different gears.

The operation gear relations are given in table,

<i>S</i> .	Operation	Revolution of elements			
No.		Planet carrier C	Sun wheel S	Planet wheel P	Internal gear E
1.	Planet carrier C fixed. Sun wheel S rotates through + 1 revolution. (<i>i.e.</i> 1 rev. anticlockwise)	0	+ 1	$-\frac{T_S}{T_P}$	$-\frac{T_S}{T_P} \times \frac{T_P}{T_E} = -\frac{T_S}{T_E}$
2.	Multiply by x to all	0	+ <i>x</i>	$-x \times \frac{T_S}{T_P}$	$-x \times \frac{T_S}{T_E}$
3.	Add y revolution to all elements	+ y	x+y	$-x\frac{T_S}{T_P}+y$	$-x \frac{T_S}{T_E} + y$

And Pitch relation is,

$$\frac{D_S}{2} + D_P = \frac{D_E}{2}$$

5B. Briefly illustrate the components of hydraulic actuation system in a 3 (5) 5 transmission line.