Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

(A constituent unit of MAHE, Manipal)

SECOND SEMESTER M.TECH. (AVIONICS) END SEMESTER EXAMINATIONS, MAY 2024

DIGITAL CONTROL SYSTEMS [AAE 5433]

REVISED CREDIT SYSTEM

	Time:	3	Hours
--	-------	---	-------

Date: 07 May 2024

Max. Marks: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- Missing data may be suitably assumed.

Q.N O	Questions	Mark s	С 0	BT L
1A.	Solve and obtain the initial value and final value of the function $f(z) = \frac{z^2+2z+1}{z^3+3z^2+3z+1}$	(03)	1	3
1B.	Determine the inverse Z transform of the function $X(z) = \frac{z+1}{(z+2)(z+3)}$		1	3
1C.	Given the feed-forward pulse transfer function (open loop pulse transfer function) of a digital control system $G_d(z)G(z) = \frac{Kz(1-e^{-T})}{(z-1)(z-e^{-T})}$, with sampling period, T=0.5 sec. $f(t) = \frac{f(t)}{R(z)} = \frac{f(t)}{\delta_T} = \frac{f(t)}{G_D(z)} = \frac{f(t)}{G_D(z$		3	4
2A.	Evaluate the pulse transfer function and step response of the following system if $G_p(s) = \frac{1}{s+1}$. $\begin{array}{c}r(t) \\ \hline R(z) \end{array} \xrightarrow{T=1 \text{ sec}} \overbrace{f_{s}(s)}^{1-e^{-Ts}} \overbrace{f_{s}($	(03)	2	3

2B.	For a system with characteristic equation	(03)	3	4
	$z^2 + z(0.2838K-1.1353] + 0.1353+ 0.1485K = 0$, determine the range of K for stability using bilinear transformation.			
2C.	Analyze the stability of the system with characteristic equation $P(z) = z^3 - 1.1z^2 - 0.1z + 0.2 = 0$, using Jury's stability test.	(04)	3	4
ЗА.	For the digital control system with a lag compensator such that the compensated system satisfies the following specifications: damping ratio, $\zeta = 0.517$; settling time,ts = 5 sec; sampling period,T =0.52 sec; static velocity error constant of the compensated system, Kv= 6 sec ⁻¹ . The pulse transfer function of the uncompensated system is $G_{ho}G_p(z) = \frac{0.098(z+0.714)K}{(z-1)(z-0.353)}.$ i. Develop the transient specifications ii. Determine the dominant closed loop poles $\overbrace{R(s)}^{f} \overbrace{\delta_r}^{f} \overbrace{C(t)}^{f} \overbrace{C(t)}^{f} \overbrace{C(s)}^{f}$ Fig.Q3A	(03)	4	3
3B.	For the digital control system with a lag compensator such that the compensated system satisfies the following specifications: damping ratio, $\zeta = 0.517$; settling time, ts = 5 sec; sampling period, T =0.52 sec; static velocity error constant of the compensated system, Kv = 6 sec ⁻¹ . The pulse transfer function of the uncompensated system is $G_{ho}G_p(z) = \frac{0.098(z+0.714)K}{(z-1)(z-0.353)}$. Determine the pulse transfer function compensated system and thus design the controller. $f(s) = \frac{f_0(z)}{\delta_T} + \frac$	(04)	4	6
3C.	Design a digital PID controller using root locus approach for a DC motor speed control system , where the pulse transfer function of the plant is $G_{ho}G_p(z) = \frac{1.2417 X 10^{-5}(z+0.9934)}{(z-0.995)(z9851)}$ for a time constant of 0.3 second, a dominant pole damping ratio of 0.7, sampling period T= 0.005 sec.	(03)	4	6
4A.	The vertical and horizontal dynamics of an autonomous underwater vehicle must be controlled to remotely operate	(05)	5	4

	<pre>the vehicle. The difference equation of the horizontal motion of the vehicle is given by y(k+2) + 5y(k+1) + 6y(k) = u(k) i) Develop the discrete state model of the motion of the vehicle ii) For the input u(k) = 1, k≥ 1, Solve output y(k).</pre>			
4B.	where $y(0)=0, y(1)=0, 1=1$ sec Analyse the controllability and observability of a computer control system with the given state space model. $x(k+1) = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix} x(k) + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(k)$ $y(k) = \begin{bmatrix} 1 & 1 \end{bmatrix} x(k)$	(03)	5	4
4C.	Given $E(s) = \frac{10(s+2)}{s^2(s^2+2s+3)}$. Apply sampling theorem and determine the maximum value of the sampling interval T that can be used to reconstruct $e(t)$ from its samples.	(02)	2	3
5A.	Apply logarithmic transformation and solve the given nonlinear difference equation $[y(k+2)][y(k+1)]^5[y(k)]^4 = u(k)$, which describes a non linear discrete time control system with zero initial conditions and the input $u(k) = e^{-10k}$	(02)	5	3
5B.	Summarize on the software requirements, selection of ADC and DAC, sampling period switching with respect to the design of hardware and software architecture of digital control system	(05)	5	2
5C.	Explain the computer control of an aircraft turbojet engine with the help of block diagram.	(03)	5	2