Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL (A constituent unit of MAHE, Manipal)

SECOND SEMESTER M.TECH. (AVIONICS) MAKEUP EXAMINATIONS, JUNE 2024

DIGITAL CONTROL SYSTEMS [AAE 5433]

REVISED CREDIT SYSTEM

Time: 3 Hours

Date: 24 JUNE 2024

Max. Marks: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- Missing data may be suitably assumed.

Q.N O	Questions	Mark s	С О	BT L
1A.	Find E(z) if the transfer function of the system is $E(s) = \frac{5}{s(s+1)(s+5)}$	(03)	1	3
1B.	Determine the inverse Z transform of the function $X(z) = \frac{z(z+2)}{(z-1)^2}$ using long division method. Consider k =0,1,2,3	(02)	1	3
1C.	Determine the stability of the given closed-loop control system when K=1 . The open loop pulse transfer function of the system is $G(z) = \frac{0.3679z+0.2642}{(z-0.3679)(z-1)}$ r(t) R(z) r(t) R(z) r(t) R(z) r(t) r	(05)	3	4
2A.	Fig. Q1C Evaluate the pulse transfer function and step response of the following system. $ \begin{array}{c} $	(04)	2	3
2B.	Analyze the stability of the system with characteristic equation $P(z) = z^4 - 1.2z^3 + 0.2z^2 + 0.05z - 0.001 = 0$, using Jury's stability test.	(06)	3	4

ЗА.	For a digital temperature control system with a digital PI controller have the given specifications, i. Develop the transient specifications ii. Determine the dominant closed loop poles Specifications: Sampling period = 1 sec, dominant closed loop poles with the damping ratio , $\zeta = 0.5$, number of samples per cycle of damped sinusoidal oscillation is 10. $\overrightarrow{R(s)} = \overrightarrow{G_d(z)} = \overrightarrow{C(s)} = \overrightarrow{C(s)}$	(04)	4	3
ЗВ.	For a digital temperature control system with a digital PI controller have the given specifications, Specifications: Sampling period = 1 sec, dominant closed loop poles with the damping ratio , $\zeta = 0.5$, number of samples per cycle of damped sinusoidal oscillation is 10 The pulse transfer function of the plant is $G_{ho}G_p(z) = \frac{0.6321}{z^2(z-0.3679)}$. Design the controller by determining $G_d(z)$ and K.	(06)	4	6
4A.	The motion of a satellite in equatorial is given by the state equation y(k+2) + 3y(k+1) + 2y(k) = u(k) i) Develop the discrete state model ii) For the input $u(k) = 1$, $k \ge 1$, Solve output $y(k)$. Where $y(0)=0,y(1)=0$, T= 1 sec	(05)	5	4
4B.	Analyse the controllability and observability of a computer control system with the given state space model. $x(k+1) = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix} x(k) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k)$ $y(k) = \begin{bmatrix} 1 & 1 \end{bmatrix} x(k)$	(03)	5	4
4C.	Determine the roots of the system if the system matrix is $A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$	(02)	2	3
5A.	Briefly explain the terminologies settling time, peak time, maximum overshoot and steady-state error	(03)	5	2

5B.	With the help of mathematical equations illustrate how controller is switching from a sampling period to a faster sampling period .	(03)	5	3
5C.	Find the transfer function corresponding to a digital positioning system with the state space matrices as given below $A = \begin{bmatrix} 0 & 1 \\ -0.4 & -1.3 \end{bmatrix}; B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}; C = \begin{bmatrix} 1 & 1 \end{bmatrix}; D = 0$	(04)	4	3