Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

SECOND SEMESTER M.TECH. (AVIONICS)

END SEMESTER EXAMINATIONS, APRIL/MAY 2024

NAVIGATION, GUIDANCE AND CONTROL [AAE 5217]

REVISED CREDIT SYSTEM

Time: 3	Hours Date: 03 May 2024	Μ	Max. Marks: 50		
Instructions to Candidates:					
 Answer ALL the questions. 					
 Missing data may be suitably assumed. 					
Q.NO	Questions	Marks	со	BTL	
1Δ	The following is a model of pitch displacement of missi	e (05)	C05	105	
14.	autopilot with rate feedback:	(03)	COS	LUJ	
	$\begin{array}{c} \theta_{sc} + \\ \hline \\ \bullet \\ \hline \\ \hline$				
	Determine the closed less transfer function θ . Note we				
	Determine the closed loop transfer function $\frac{1}{\theta_{ref}}$. Note, ye	u			
	will have to determine the closed loop transfer function for the inner loop first. K_{AMP} and K_{rg} represent the gain of the amplifier and the rate gyro, respectively.	e e			
1B.	A marine radar operating at 10 GHz has a maximum range of 50 km with an antenna gain of 4000. If the transmitte has a power of 250 kW and a minimum detectable sign of 10 ⁻¹¹ W. Determine the cross-section of the target, th can sight.	e (03) er al e	СО3	L05	
1C.	Explain why time-to-go t_{go} is an important trajector parameter in missile guidance.	у (02)	СО3	L03	
2A.	The Boeing 747-8 is typical of a large classical transpo aircraft is typical cruising flight at Mach 0.65 at an altitud of 20,000 ft. The characteristic equation of the aircraft is	e (05)	CO4	L03	
	$\Delta(s) = s^4 + 1.0999s^3 + 1.3175s^2 + 1.0594s + 0.01129 = 0$				
	Identify all the modes, find the frequencies and dampin ratio of all the modes and comment on stability.	g			

- **2B.** Explain the terms: (1) Line of Sight rate and (2) Closing **(03) CO3 LO3** Velocity.
- **2C.** Explain doppler shift? How do you mathematically define **(02) CO2 LO3** the total phase change in the two-way propagation path?
- **3A.** Looking at the trajectories of the surface-to-air missile as **(05) CO3 LO4** shown in figure 1, explain their guidance systems in detail.

Figure 1

3B. Look at the figure below:

(03) CO1 L03

Figure 2

These are two antennas, physically separated by a given distance, and in the second there is an appropriate duplexer with a single-antenna system. Identify what will happen with these two implementations?

3C. Consider a system with transfer function:

(02) CO3 L05

$$T(s) = \frac{s+6}{ks^2+s+6}$$

Its damping ratio will be 0.5, determine the values of k.

- **4A.** Explain all the three segments of Global Positioning System **(05) CO2 LO4** and explain trilateration by Satellite.
- **4B.** Explain the function of seeker stabilization in the typical **(03) CO3 LO4** Guidance-section functional block diagram shown in figure 3 below:

Figure 3

- **4C.** Determine the output, if the feedback H(s) is +1, and G(s) **(02) CO4 LO5** is the transfer function of the system.
- **5A.** Determine the Range and Doppler velocity of an **(05) CO3 LO5** approaching target using a triangular modulation FMCW Radar. Given: Beat frequency $f_b(up) = 15$ KHz and f_b (down) = 25 kHz, modulating frequency: 1 MHz, Δf : 1 kHz and Operating frequency : 3Ghz
- **5B.** Explain with diagrammatical representation, how a typical **(03) CO1 LO3** active RF proximity fuse is a small active CW radar system.
- **5C.** Build the transfer function of the differentiator circuit **(02) CO3 LO3** shown in figure 4

Figure 4