Reg. No.					

SEMESTER-II, M. TECH (DEFENCE TECHNOLOGY)

END-SEMESTER EXAMINATION, MAY, 2024

COURSE: AEROSPACE PROPULSION (AAE 5277)

Duration: 3 Hrs Date: 05/05/2024 MAX. MARKS: 50

Note:

➤ All questions are compulsory

Draw a neat diagram wherever necessary

> Stepwise answers carry marks

➤ Draw a neat diagram wherever ➤ Missing data may be suitably assumed.

Q.	Question	Marks	Course	BT
No.			Outcome	Level
Q1.	What is the significance of compressible flow	[3M]	CO1	C
	assumption in solving propulsion problems? Justify it.			
Q2.	What does this equation represent?	[3M]	CO1	В
	$\rho_1 u_1 A_1 = \rho_2 u_2 A_2$			
	What are the underlying assumptions that are			
	considered for arriving at this formulation?			
Q3.	Apply the one dimensional nozzle equation to	[4M]	CO1	C
	describe the design of a nozzle & diffuser at various			
	flow regimes. How the backflow effects the flow in a			
	convergent nozzle? Explain with a neat figure.			
Q4.	Explain the difference between the can and cannular	[3M]	CO2	В
	type of subsonic combustion chambers used in a jet			
	engine.			
Q5.	Explain the design and significance of Bell nozzle	[5M]	CO2	C
	over the traditional cone nozzle. How does the			
	divergence angle influence both the nozzle design			
	considerations? Since the nozzle is designed for one			
	altitude, how do you think it can be modified to			
	address the varying altitudes?			
Q6.	Differentiate between axial compressors and axial	[3M]	CO2	В
	turbines.			

Q7.	Describe with a neat diagram, the construction and	[4M]	C02	В
	working of turbofan and turboprop engines. Which of			
	the two will have higher propulsive efficiency?			
	Justify.			
Q8.	Explain how the thrust is estimated from the rocket	[3M]	CO3	C
	motor? How is it different from the equation of thrust			
	for a basic jet engine?			
Q9.	Describe the desirable properties of a good propellant	[3M]	CO3	В
	which differentiates the liquid from solid propellants?			
Q10.	Distinguish between the case bonded and cartridge	[3M]	CO3	В
	loaded propellant grain configurations. Which one is			
	commonly used and why?			
Q11.	Describe with a schematic diagram the 'V' model of	[4M]	CO4	В
	system engineering approach			
Q12.	Explain the 6 functions of a design process adopted in	[3M]	CO4	В
	system integration.			
Q13.	Bell lab has developed a new plasma propulsion	[4M]	CO4	E
	system for mars. You are tasked to develop the			
	approach to provide a detailed plan of action for its			
	development. Will you use horizontal integration or			
	vertical integration method for development of a new			
	propulsion system? Explain your choice with reasons.			
	Also provide the advantages of your choice and			
	disadvantages of the other methods.			
Q14.	The royal airforce is having a peculiar issue of the	[5M]	CO5	${f E}$
	poor fixed wing design which is based on RAF 34			
	1496 airfoil. It was found to be producing more drag.			
	The committee has suggested to evaluate the			
	NACA23012 airfoil profile. You are tasked to prepare			
	the outline for a CFD simulation. Explain to the			
	committee the steps you will follow to carry out the			
	CFD simulation. How will CFD compare the two			
	airfoils?			