Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

SECOND SEMESTER M.TECH. (DEFENCE TECHNOLOGY)

END SEMESTER MAKE UP EXAMINATIONS, JUNE 2024

DATA ACQUISTION, TRACKING AND POST FLIGHT ANALYSIS [AAE 5060]

REVISED CREDIT SYSTEM

Time: 3 Hours	Date: 26th June 2024	Max. Marks: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- Missing data may be suitably assumed.

Q.NO	Questions	Marks	СО	BTL
1A.	Write a note on classification of instruments and direct and indirect measurements with appropriate examples.	[5M]	1	2
18.	For the measuring instrument given below, draw the generalized block diagram of all function components and explain its working.	[5 M]	2	4
2A.	 Consider a Pressure control system with a tank capacity of 0 to 2 Kg/cm2. A pressure transmitter is used and calibrated to give an output of 4 to 20 mA. A data acquisition system with a resolution of 10 bit is used with an input range of 0 to 20mA. If the pressure value is 0.6 Kg/cm2, calculate (a) the binary value that will be stored in memory of the system. (b) find out the input pressure change and transmitter change, if there is a 1bit change in the memory (minimum detectable pressure). 	[5M]	2	4

2B.	Draw the block diagram of a typical data acquisition system and explain its functional blocks.									[3M]	2	1	
2C.	What is aliasing? Explain.										[2M]	2	1
3A.	The table given below lists a sample of experimental dat							data.	[5M]	3	4		
	Value	3	4	5	6	7	8	9	10	11			
	Frequency of Occurrence	2	3	3	6	7	6	4	3	2			
	Calculate (a) Arithmetic Mean, (b). Mean Deviation (c). Std. Deviation, (d). Probable error of one reading, (e). Probable error of mean, and (f). Std. Deviation of Std. Deviation.									, (e).			
3B.	Draw the circuit of a non-inverting summing amplifier and derive an expression for its output.									[5M]	3	3	
4A.	Differentiate primary and secondary sensing elements with an example.										[2M]	2	1
4B.	A thermocouple provides 0.56mV at 10° C and 0.68mV at 500 °C. Design an amplification circuit to get an output of 0 to 5V.									[3M]	4	4	
4C.	 Design a second-order Sallen-Key low-pass filter circuit using operational amplifiers to meet the following specifications: a) Cutoff frequency (fc): 1 kHz b) Passband gain (A_pass): -3 dB (unity gain) c) Quality factor (Q): 0.707 (Butterworth response) 									[5M]	4	4	
5A.	Write a note on second order systems and its time domain response.										[3M]	4	2
5B.	Explain any four static characteristics of a measuring instrument									[2M]	4	2	
5C.	Design a RTD circuit with wheat stone bridge for an input temperature of 200 °C to 600 °C, with a required output of 0 to 5V. Consider a 10bit ADC which is used to convert the analog signal to digital and interfaced with a computer. Calculate the corresponding binary value stored in the memory if the current temperature is 350 °C.								utput nvert ith a value	[5M]	5	5	