

II SEMESTER M.TECH (INDUSTRIAL BIOTECHNOLOGY) END-SEMESTER EXAMINATION, --/--/23 (02:00-05:00PM) SUBJECT: Pharmaceutical Biotechnology (BIO 5009)

REVISED CREDIT SYSTEM ANSWER ALL QUESTIONS

TIME: 3 HOURS

MAX. MARKS: 50

Q. NO		MARKS					
1A	What are the uses of pharmacokinetic models?	3					
1B	List out the advantages & disadvantages of Buccal & Sublingual and Intravenous routes of administration						
1C	What are the different theories available to explain the structure of cell membrane and explain it briefly?	3					
2A	An antibiotic is given by IV bolus injection at a dose of 500 mg. The apparent volume of distribution was 21 L and the elimination half-life was 6 hours. Urine was collected for 48 hours, and 400 mg of unchanged drug was recovered. What is the fraction of the dose excreted unchanged in the urine? Calculate k_{e} , Cl_{T} and Cl	3					
2B	If drug is eliminated by first order, what % drug eliminated after 2 half lifes of a drug.	3					
2C	A new antibiotic drug was given in a single intravenous bolus of 4 mg/kg to five healthy male adults ranging in age from 23 to 38 years (average weight 70 kg). The pharmacokinetics of the plasma drug concentration–time curve for this drug fits a one-compartment model. The equation of the curve that best fits the data is $Cp=70e^{(-0.36t)}$ Determine the following (assume units of µg/mL for C p and hr for t): a. What is the V _D ? b. How much drug is left in the body after 4 hours? c. Predict what body water compartment this drug might occupy and explain why you made this prediction.	4					
3A	 d. Assuming the drug is no longer effective when levels decline to less than 2 µg/mL, when should you administer the next dose? Plasma samples from a patient were collected after an oral bolus dose of 10 mg of a new benzodiazepine solution as follows: 						

												1	
	Time (hr)	0.25	0.5	0.75	1	2	4	6	10	14	20		
	Concentration (ng/mL)	2.85	5.43	7.75	9.84	16.20	22.15	23.01	19.09	13.90	7.97		
	From the data above, determine the elimination constant (K) and absorption constant (K_a) of the drug using method of residuals.												
3B	Derive the mathematical expression of D_{max}^{∞} and D_{min}^{∞} at steady state when the drug is administrated by multiple IV injections.												3
3C	What is prodrug? why prodrugs are used in formulation? Illustrate different way of making prodrugs											4	
4 A	What is the drawback in conventional cancer therapy and how nano-medicine												4
4B	Explain nanosystems in pharmaceutical formulations												3
4C	Explain different active targeting moiety used in nanomedicine and limitations of active targeting											3	
5A	Illustrate how nanosystems are useful in treating drug resistance infectious diseases with proper reasoning and explanation											4	
5B	Why delivering drug to posterior part of the eye is very difficult? explain											3	
5C	Why tuberculosis is a very difficult disease to contain? explain how Nano- medicine is very promising method for drug delivery?												3