

II SEMESTER M.TECH (INDUSTRIAL BIOTECHNOLOGY) END-SEMESTER EXAMINATION, 09/05/24 (09:30-12:00PM) SUBJECT: Pharmaceutical Biotechnology (BIO 5408)

REVISED CREDIT SYSTEM ANSWER ALL QUESTIONS

TIME: 3 HOURS

MAX. MARKS: 50

Q. NO		MARKS
1A	What are the uses of pharmacokinetic models?	3
1B	List out the advantages & disadvantages of Buccal & Sublingual and Intravenous routes of administration	4
1C	What are the different theories available to explain the structure of cell membrane and explain it briefly?	3
2A	An antibiotic is given by IV bolus injection at a dose of 500 mg. The apparent volume of distribution was 21 L and the elimination half-life was 6 hours. Urine was collected for 48 hours, and 400 mg of unchanged drug was recovered. What is the fraction of the dose excreted unchanged in the urine? Calculate k_{e} , Cl_{T} and Cl	3
2B	If drug is eliminated by first order, what % drug eliminated after 2 half lifes of a drug.	3
2C	 A new antibiotic drug was given in a single intravenous bolus of 4 mg/kg to five healthy male adults ranging in age from 23 to 38 years (average weight 70 kg). The pharmacokinetics of the plasma drug concentration-time curve for this drug fits a one-compartment model. The equation of the curve that best fits the data is Cp=70e^(-0.36t) Determine the following (assume units of µg/mL for C p and hr for t): a. What is the V D? b. How much drug is left in the body after 4 hours? c. Predict what body water compartment this drug might occupy and explain why you made this prediction. d. Assuming the drug is no longer effective when levels decline to less than 2 µg/mL, when should you administer the next dose? 	4

From the data above, determine the elimination constant (K) and absorption constant (K_a) of the drug using method of residuals.	
3B Derive the mathematical expression of D_{max}^{∞} and D_{min}^{∞} at steady state when the drug is administrated by multiple IV injections.	3
3C What is prodrug? why prodrugs are used in formulation? Illustrate different way of making prodrugs	4
4A What is the drawback in conventional cancer therapy and how nano-medicine helps to overcome these barriers?	4
4B Explain nanosystems in pharmaceutical formulations	3
4C Explain different active targeting moiety used in nanomedicine and limitations of active targeting	3
5A Illustrate how nanosystems are useful in treating drug resistance infectious diseases with proper reasoning and explanation	4
5B Why delivering drug to posterior part of the eye is very difficult? explain with an example how polymer drug delivery helps in delivering drugs?	3
5C Why tuberculosis is a very difficult disease to contain? explain how Nano- medicine is very promising method for drug delivery?	3