

## II SEMESTER M.TECH. (CSIS) (DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING) END SEMESTER EXAMINATIONS, MAY 2024 SUBJECT: AI AND ML TECHNIQUES IN CYBER SECURITY (CSE - 5416) REVISED CREDIT SYSTEM (XX/XX/2024)

Time: 9:30 am to 12:30 pm

MAX.MARKS: 50

## **INSTRUCTIONS TO CANDIDATES:-**

- Answer **ALL** the questions.
- Missing data may be suitable assumed.

|     |                                                                                                                                                                                                                                                                                             |         |   |   |   |   |   |        |    |    |                    | Marks |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---|---|---|---|---|--------|----|----|--------------------|-------|
| 1A. | Spam detection is an example of pattern recognition because spam has a                                                                                                                                                                                                                      |         |   |   |   |   |   |        |    |    |                    | 5M    |
|     | largely predictable set of characteristics, and an algorithm trained to recognize                                                                                                                                                                                                           |         |   |   |   |   |   |        |    |    |                    |       |
|     | those characteristics as a pattern by which to classify emails. Is it possible that                                                                                                                                                                                                         |         |   |   |   |   |   |        |    |    |                    |       |
|     | spam detection problem can also be an anomaly detection problem. Justify.                                                                                                                                                                                                                   |         |   |   |   |   |   |        |    |    |                    |       |
|     | Also Illustrate some other applications that clearly fall in the category of                                                                                                                                                                                                                |         |   |   |   |   |   |        |    |    |                    |       |
|     | pattern recognition.                                                                                                                                                                                                                                                                        |         |   |   |   |   |   |        |    |    |                    |       |
| 1B. | Identify the algorithm which detects anomalies by fitting the SVM with data                                                                                                                                                                                                                 |         |   |   |   |   |   |        | 3M |    |                    |       |
|     | belonging to only a single class.                                                                                                                                                                                                                                                           |         |   |   |   |   |   |        |    |    |                    |       |
| 1C. | List and explain the drawbacks of k-nearest neighbor model.                                                                                                                                                                                                                                 |         |   |   |   |   |   |        |    | 2M |                    |       |
| 2A. | Given the following shingling matrix and permutations for some documents                                                                                                                                                                                                                    |         |   |   |   |   |   |        |    | 5M |                    |       |
|     | $(d_1, d_2, d_3)$                                                                                                                                                                                                                                                                           | d3):    |   |   |   |   |   |        |    |    |                    |       |
|     | $d_1  d_2  d_3$                                                                                                                                                                                                                                                                             |         |   |   |   |   |   |        |    |    |                    |       |
|     | 2                                                                                                                                                                                                                                                                                           | 5       | 3 | 0 | 1 | 1 |   |        |    |    |                    |       |
|     | 4                                                                                                                                                                                                                                                                                           | 1       | 4 | 1 | 1 | 0 |   |        |    |    |                    |       |
|     | 6                                                                                                                                                                                                                                                                                           | 2       | 6 | 1 | 1 | 0 |   |        |    |    |                    |       |
|     | 1                                                                                                                                                                                                                                                                                           | 3       | 2 | 0 | 0 | 1 | ₽ |        |    |    |                    |       |
|     | 5                                                                                                                                                                                                                                                                                           | 4       | 1 | 0 | 1 | 1 |   |        |    |    |                    |       |
|     | 3                                                                                                                                                                                                                                                                                           | 6       | 5 | 1 | 1 | 1 |   | Signat | ]  |    |                    |       |
|     | <ol> <li>Complete the corresponding signature matrix by Min-Hashing.</li> <li>Compute the Jaccard similarities between documents.</li> <li>To produce clusters of similar items, one must find groups of signature that overlap in many places. Discuss the two ways to do this.</li> </ol> |         |   |   |   |   |   |        |    |    | s.<br>f signatures |       |
| 2B. | Discuss the algorithm that divides data sets up into subgroups of high-density                                                                                                                                                                                                              |         |   |   |   |   |   |        |    | 3M |                    |       |
|     | regions and the number of clusters is not operator defined but instead inferred                                                                                                                                                                                                             |         |   |   |   |   |   |        |    |    |                    |       |
|     | from t                                                                                                                                                                                                                                                                                      | he data |   |   |   |   |   |        |    |    |                    |       |

| 2C. | Outline the number of techniques to address the feature selection problem.        |    |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------|----|--|--|--|--|--|
| 3A. | Generalize some considerations that data scientists use to improve data           |    |  |  |  |  |  |
|     | collection.                                                                       |    |  |  |  |  |  |
| 3B. | Depict and discuss a typical malware attack flow.                                 |    |  |  |  |  |  |
| 3C. | Using feature engineering, analyze and write the features to detect different     | 2M |  |  |  |  |  |
|     | kinds of attacks on web application.                                              |    |  |  |  |  |  |
| 4A. | Suppose that you have concluded from your data that if more than 20 new           | 4M |  |  |  |  |  |
|     | accounts are created from the same IP address in the same hour, these accounts    |    |  |  |  |  |  |
|     | are certain to be fake. Scoring at account creation time, can count creation      |    |  |  |  |  |  |
|     | attempts per IP address in the past hour and block if the counter is greater than |    |  |  |  |  |  |
|     | 20. For any attack, there will still be 20 fake accounts that got through and are |    |  |  |  |  |  |
|     | free to send spam. If you score newly created accounts once per hour and take     |    |  |  |  |  |  |
|     | down any group of more than 20 from the same IP address, you will block all       |    |  |  |  |  |  |
|     | the spammers, giving them each one hour to wreak havoc. Clearly a robust          |    |  |  |  |  |  |
|     | approach combines instances of both techniques. Analyze and illustrate with       |    |  |  |  |  |  |
|     | valid answer.                                                                     |    |  |  |  |  |  |
| 4B. | An anomaly detection system that raises too many false positive alerts to         | 3M |  |  |  |  |  |
|     | security operations personnel should take advantage of the correct labels         |    |  |  |  |  |  |
|     | given by human experts during the alert triaging phase to retrain and improve     |    |  |  |  |  |  |
|     | the model. Analyze the given example and describe and depict it with suitable     |    |  |  |  |  |  |
|     | justification.                                                                    |    |  |  |  |  |  |
| 4C. | List and discuss the different approaches to speed up machine learning            | 3M |  |  |  |  |  |
|     | applications for performance bottlenecks in the program execution                 |    |  |  |  |  |  |
|     | framework, find more efficient algorithms or using parallelism.                   |    |  |  |  |  |  |
| 5A. | Briefly outline the concept of model poisoning and evasion attack.                | 5M |  |  |  |  |  |
| 5B. | "Even perfect learners can display vulnerabilities because the Bayes error rate   | 3M |  |  |  |  |  |
|     | might be a non-zero". Justify with a suitable answer.                             |    |  |  |  |  |  |
| 5C. | Discuss the working of botnets.                                                   | 2M |  |  |  |  |  |
|     |                                                                                   |    |  |  |  |  |  |