

I SEMESTER M. TECH (Computer Science & Engineering) END SEMESTER MAKEUP EXAMINATION, January 10, 2024 SUBJECT: QUANTUM COMPUTING (CSE 5115) REVISED CREDIT SYSTEM

Time: 3 Hours (9.30 AM-12.30 AM)

Note: Answer ALL the questions.

MAX. MARKS: 50

1A	A qubit is prepared in state $ \psi\rangle = \frac{1}{\sqrt{2}} +\rangle + \frac{i}{\sqrt{2}} -\rangle$. It is then measured. Compute P(+) and P(-)	2
1B	Suppose $ \psi\rangle = \frac{1}{\sqrt{2}} (0\rangle + 1\rangle) and \varphi\rangle = \frac{1}{\sqrt{2}} (0\rangle - 1\rangle)$. Compute $\langle \psi \varphi \rangle$	3
1C	Determine whether the following two qubit state is entangled or not. Justify your answer. $\frac{ 00\rangle - 11\rangle}{\sqrt{2}}$	5
2A	Let $ \psi_1\rangle = \frac{1}{\sqrt{3}} 0\rangle + \sqrt{\frac{2}{3}} 1\rangle$ and $ \psi_2\rangle = \frac{1}{2} 0\rangle + \frac{\sqrt{3}}{2} 1\rangle$ Compute $ \psi_1\rangle \otimes \psi_2\rangle$	3
2B	Let H is Hadamard and $ \psi\rangle = \frac{1}{2} (00\rangle + 01\rangle + 10\rangle + 11\rangle)$. Compute $ \psi_1\rangle = (H \otimes H) \psi\rangle$	4
2C	Define CCNOT gate. Design quantum circuit for CCNOT gate and give its matrix representation. With circuit diagram Implement FANOUT operation using CCNOT gate.	3
ЗA	Define Y Gate. Derive the Braket representation of Y gate.	3
3B	Compute the matrix for the three-qubit Toffoli gate.	2
3C	Compute the matrix for 2 qubit QFT.	5
4A	Let $f: \{0,1\}^2 \to \{0,1\}$ be a binary function. Consider the quantum state $ \psi_0\rangle = 0\rangle^{\otimes 2} \otimes 1\rangle$ (i) Apply H gate to each qubit of $ \psi_0\rangle$. Let $ \psi_1\rangle = H \psi_0\rangle$ (ii) Apply Oracle $U_f: x, y\rangle \to x, y \oplus f(x)\rangle$ to $ \psi_1\rangle$. Let $ \psi_2\rangle = U_f \psi_1\rangle$. (iii) Apply H gate on the first 2 qubits of $ \psi_2\rangle$.	5
4B	Alice wishes to send Bob a message via a secure protocol. She chooses to use a private key encryption technique and decides to use the BB84 protocol to generate a provably secure private encryption key. Alice's first step is to generate a random binary string. The string she generates is <i>b</i> = 1001011110101000. Alice then encodes this as a string of quantum qubits as per the BB84 protocol, using the encoding H H H I I H H H I I I H I H. What is the quantum string that she generates? Alice then sends the string to Bob, who decodes using I H H I H H I H H I I H I H I. Alice and Bob announce their encodings publicly and retain the qubits for which they chose the same encoding. Compute the string that they retain?	3

4C	Suppose Alice transmits the two-bit string '00' using the superdense coding protocol and an evesdropper, Charlie, intercepts the qubit transmitted by Alice, measures it and then re-transmits to Bob. Calculate the probability that Bob correctly receives '00'.	2
5A	Using quantum algorithm compute the period of the function $f(x) = 11^x \mod 15$	5
5B	Explain 3 challenges in quantum error correcting codes.	2
5C	Imagine we encode the state $ \Psi\rangle = \alpha 0\rangle + \beta 1\rangle$ using Shor's 9 qubit code, and then an X error occurs	2
	on the 8th qubit of the encoded state $E \Psi >$. Determine the state following the error.	3