

I SEMESTER M. TECH (Computer Science & Information Security) END SEMESTER EXAMINATION, May 9, 2024 SUBJECT: INTRODUCTION TO QUANTUM COMPUTING (CSE 5420) REVISED CREDIT SYSTEM

Time: 3 Hours (9.30 AM-12.30 AM)

Note: Answer ALL the questions.

MAX. MARKS: 50

1A	Show that $ 0\rangle = \frac{1}{\sqrt{2}}(+\rangle + -\rangle)$ and $ 1\rangle = \frac{1}{\sqrt{2}}(+\rangle - -\rangle)$.	2
1B	Prove that	
	$\frac{1}{\sqrt{2}} \left(\left 00 \right\rangle + \left 11 \right\rangle \right) = \frac{1}{\sqrt{2}} \left(\left ++ \right\rangle + \left \right\rangle \right)$	4
1C	Given two qubits in the state $ \psi\rangle = \frac{1}{\sqrt{2}}(++\rangle + \rangle)$, Compute the probabilities of measuring ,	4
	$ ++\rangle, +-\rangle, -+\rangle$ and $ \rangle$.	
2A	Consider the following two qubit quantum circuit. (H is Hadamard gate)	
		5
	Compute outputs for the inputs $ 00\rangle$, $ 01\rangle$, $ 10\rangle$ and $ 11\rangle$. Hence compute the matrix representation of	
	the above quantum circuit.	
28	Let $U = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$ Prove that U is Unitary. Let $ \psi\rangle = \left(\frac{1}{2} + \frac{i}{2}\right) 0\rangle + \left(\frac{1}{2} - \frac{i}{2}\right) 1\rangle$ Compute $U \psi\rangle$.	3
2C	With neat diagram, explain Bloch sphere.	2
3A	Examine with explicit calculation whether the following two qubit quantum state is entangled or	
	not.	5
	$\left \phi\right\rangle = \frac{1}{\sqrt{6}} \left(\left 00\right\rangle + i\left 01\right\rangle + 2\left 10\right\rangle\right)$	5
3B	Define Bell state. Construct FOUR standard Bell states.	3

3C	With neat circuit diagram define Fredkin gate and give its matrix representation.	2
4A	Construct 2 qubit QFT for all inputs and give its matrix representation.	5
4B	With quantum circuit implement NAND, and XOR gates using Toffoli gate.	3
4C	Suppose Alice transmits the two-bit string '00' using the superdense coding protocol and an evesdropper, Charlie, intercepts the qubit transmitted by Alice, measures it and then re-transmits to Bob. Calculate the probability that Bob correctly receives '00'.	2
5A	Using quantum algorithm compute the period of the function $f(x) = 3^x \mod 20$	5
5B	Design the quantum circuit for Deutsch-Jozsa algorithm.	2
5C	Imagine we encode the state $\alpha 0\rangle + \beta 1\rangle$ using the bit-flip code (i.e. $ 0\rangle \rightarrow 000\rangle$ and $ 0\rangle \rightarrow 111\rangle$)	3
	and a Y error occurs on the second qubit. Compute the decoded state?	