

II SEMESTER M. TECH (EMBEDDED CONTROL AND AUTOMATION) END SEMESTER EXAMINATIONS MAY 2024 VLSI SYSTEM DESIGN (ICE 5412)

Time:3 Hours 09-05 -2024		IAX. N	IARK	S: 50	
	Instructions to Candidates:				
	 Answer ALL the questions. 				
Q.No.	Description	М	со	PO'S	BL
1A	Differentiate between enhancement mode and depletion mode transistors.	3	1	5	4
1B	An nFET with L=0.5 μ m is built in a process where the process transconductance is 100 μ <i>A</i> / <i>V</i> ² and <i>V</i> _{<i>Tn</i>} = 0.7 <i>V</i> . The gate source voltage is set to a value of <i>V</i> _{<i>Gsn</i>} = <i>V</i> _{<i>DD</i>} = 3.3 <i>V</i> . Calculate the required channel width 'W' to obtain a resistance <i>R</i> _{<i>n</i>} = 950 Ω .	3	1	4	3
1C	Calculate the total capacitance C_{out} of the NOT gate shown in figure 1C with a load capacitance $C_L = 120 \ FF$.	4	2	4	3
	VDD VDD k = pFET drain $k = 1 \mu m (drawn)$ $L = 1 \mu m (drawn)$ $L_o = 0.1 \mu m$ $V_{DD} = 5 V$ $C_{ox} = 2.70 \text{ fF}/\mu m^2$ $mFET: k_p = 60 \mu A/v^2$ $C_j = 1.05 \text{ fF}/\mu m^2$ $C_{jsu} = 0.32 \text{ fF}/\mu m^2$ $V_{DD} = 0.1 \mu m$ $V_{DD} = 5 V$ $C_{ox} = 2.70 \text{ fF}/\mu m^2$ $V_{TOR} = 0.6 V$ $C_j = 0.86 \text{ fF}/\mu m^2$ $C_{jsw} = 0.24 \text{ fF}/\mu m$				
	Figure 1C				
2A	A CMOS logic gate that implements the function:	4	2	4	5
	$f = \overline{(a+b).(b+c).d}$				
	is needed in a control network. Design the logic circuit with device sizes in the gate that equalize the nFET and pFET resistances. Identify the worst-case nFET and pFET paths that will slow down the response.				
2B	With equations, illustrate how device parameters (any six) of a MOSFET are scaled using the constant voltage scaling model.	3	2	5	3
2C	Compare and contrast the working of pass transistors and transmission gates.	3	2	4	4
3A	Sketch the transistor-level schematic and stick diagram for implementing the following function: $f = \overline{a.b.c + a.d}$	3	3	4	3

3B Consider the two designs of a 2-input AND gate shown in Figure 3B
(a) and (b). Justify which of the two circuits will be faster with a calculation of the path effort, delay, and input capacitances x and y to achieve this delay.

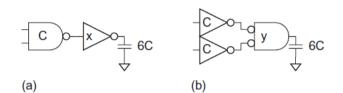


Figure 3B

3C Sketch a transistor level schematic of a pseudo-nMOS gate that **3 3 4 3** implements the function:

$$F = \overline{A(B + C + D) + E.F.G}$$

- **4A** Sketch the transistor level schematic of a clocked JK latch.
- **4B** Implement the following state table using a ROM and two D flip-flops **3** where 'X' is the input and 'Z' is the output and S_0, S_1, S_2 and S_3 are the states:

Present State	Next State		Outp	out (Z)
	X=0	X=1	X=0	X=1
S ₀	<i>S</i> ₀	<i>S</i> ₁	0	1
<i>S</i> ₁	<i>S</i> ₂	S ₃	1	0
<i>S</i> ₂	<i>S</i> ₁	S ₃	1	0
<i>S</i> ₃	<i>S</i> ₃	<i>S</i> ₂	0	1

Draw the block diagram and the ROM truth table.

4C	Illustrate different programming technologies of an FPGA with figures.	4	4	5	3
5A	With a flowchart, illustrate the design flow starting from the specification of a chip to its implementation.	4	4	5	3
5B	Compare the three main approaches followed in design for testability in VLSI systems.	3	5	5	4
5C	Interpret the different types of IC packaging techniques that are available in VLSI systems.	3	5	5	3