|--|



(A constituent unit of MAHE, Manipal)

## DEPARTMENT OF MECHATRONICS II SEMESTER M.TECH. (INDUSTRIAL AUTOMATION & ROBOTICS) END SEMESTER EXAMINATIONS, MAY 2024 SUBJECT: ARITIFICAL INTELLGENCE AND EXPERT SYSTEMS [MTE 5002] Date: 05 May 2024

## **Time: 3 Hours**

MAX. MARKS: 50

## Instructions to Candidates:

- Answer **ALL** the questions.
- Missing data can be assumed and suitably justified.

| Q.<br>No   | Question                                                                                                                                                                                                        | Μ | CO | PO | LO | BL |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|----|----|----|
| 1A.        | In a credit card fraud detection system, out of 80 fraudulent transactions, the system                                                                                                                          | 5 | 1  | 3  | 2  | 3  |
| 111,       | correctly identifies 70 as fraud and misses 5. It correctly classifies 900 non-fraudulent                                                                                                                       |   |    |    |    |    |
|            | transactions as not fraud, but incorrectly flags 10 as fraud. Illustrate the confusion matrix                                                                                                                   |   |    |    |    |    |
|            | and calculate the precision, recall, and F1 score of the fraud detection system.                                                                                                                                |   |    |    |    |    |
| 1R         | A man is known to speak truth 3 out of 4 times. He throws a die and reports that it is a                                                                                                                        | 3 | 1  | 3  | 2  | 4  |
| 10,        | six. Examine the probability that it is actually a six.                                                                                                                                                         |   |    |    |    |    |
| 1C.        | Explain how Bayesian networks enhance predictive modeling in machine learning by leveraging conditional independence statements and probabilistic reasoning to represent complex relationships among variables? | 2 | 1  | 3  | 1  | 4  |
| 2A.        | A Bayesian network is used to model the relationship between a patient's symptoms, medical history, and the likelihood of having a particular disease. The network has three variables:                         | 5 | 1  | 1  | 2  | 5  |
|            | A: The patient's medical history (positive or negative)                                                                                                                                                         |   |    |    |    |    |
|            | B: The patient's symptoms (present or not present)                                                                                                                                                              |   |    |    |    |    |
|            | C: The likelihood of having the disease (high, medium, or low)                                                                                                                                                  |   |    |    |    |    |
|            | The conditional probability table for the network is as follows:                                                                                                                                                |   |    |    |    |    |
|            | P(B=present A=positive, C=high) = 0.9                                                                                                                                                                           |   |    |    |    |    |
|            | P(B=present A=positive, C=medium) = 0.6                                                                                                                                                                         |   |    |    |    |    |
|            | P(B=present A=positive, C=low) = 0.3                                                                                                                                                                            |   |    |    |    |    |
|            | P(B=present A=negative, C=high) = 0.6                                                                                                                                                                           |   |    |    |    |    |
|            | P(B=present A=negative, C=medium) = 0.3                                                                                                                                                                         |   |    |    |    |    |
|            | P(B=present A=negative, C=low) = 0.1<br>P(C=bich A=negitive) = 0.5                                                                                                                                              |   |    |    |    |    |
|            | P(C=mgn A=positive) = 0.3 $P(C=mgn A=positive) = 0.4$                                                                                                                                                           |   |    |    |    |    |
|            | P(C=low A=positive) = 0.1                                                                                                                                                                                       |   |    |    |    |    |
|            | P(C=high A=negative) = 0.2                                                                                                                                                                                      |   |    |    |    |    |
|            | P(C=medium A=negative) = 0.5                                                                                                                                                                                    |   |    |    |    |    |
|            | P(C=low A=negative) = 0.3                                                                                                                                                                                       |   |    |    |    |    |
|            | Given this information, Estimate the probability of a patient having a high likelihood of                                                                                                                       |   |    |    |    |    |
|            | having the disease (C=high) if they have symptoms (B=present).                                                                                                                                                  |   |    |    | -  |    |
| <b>2B.</b> | You have performed k-means clustering on a dataset containing customer spending data.                                                                                                                           | 3 | 1  | 3  | 2  | 5  |
|            | The dataset consists of features such as annual income and spending score. After<br>abutating the data into k abutars, you want to actimate the ailboutte coefficient for                                       |   |    |    |    |    |
|            | cluster 2 point B2 by evaluating cohesion and separation distance between the clusters                                                                                                                          |   |    |    |    |    |
|            | cluster 2, point b2 by evaluating concision and separation distance between the clusters.                                                                                                                       |   |    |    |    |    |
|            |                                                                                                                                                                                                                 |   |    |    |    |    |
|            |                                                                                                                                                                                                                 |   |    |    |    |    |
|            |                                                                                                                                                                                                                 |   |    |    |    |    |
|            |                                                                                                                                                                                                                 |   |    |    |    |    |

| · · · · · · · · · · · · · · · · · · · | Assume that the dataset has been clustered into 3 clusters $(k=3)$ and the cluster labels for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                          |                                                                                       |   |   | 1 | 1 |   |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---|---|---|---|---|
|                                       | Assume that the dataset has been clustered into 3 clusters (k=3), and the cluster labels for each data point are given under table.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                          |                                                                                       |   |   |   |   |   |
|                                       | Table 1: Cluster labels for the given datapoints                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                          |                                                                                       |   |   |   |   |   |
|                                       | Cluster 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cluster 2                                                                                                                                                                                                                                                                                                  | Cluster 3                                                                                                                                                                                |                                                                                       |   |   |   |   |   |
|                                       | Point A1: (2,5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Point B1:(8,3)                                                                                                                                                                                                                                                                                             | Point C1: (6,10)                                                                                                                                                                         |                                                                                       |   |   |   |   |   |
|                                       | Point A2:(3,4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Point B2: (9,2)                                                                                                                                                                                                                                                                                            | Point C2: (7,8)                                                                                                                                                                          |                                                                                       |   |   |   |   |   |
|                                       | Point A3:(4,6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Point B3: (10,5)                                                                                                                                                                                                                                                                                           | Point C3: (8,9)                                                                                                                                                                          |                                                                                       |   |   |   |   |   |
| 2C.                                   | Consider two data points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $x = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; y = \begin{bmatrix} 2 & 3 \end{bmatrix}$ with                                                                                                                                                                                                                   | $r$ C, $\sigma$ and $q = 1$ , Estimate                                                                                                                                                   | linear, Non                                                                           | 2 | 1 | 3 | 2 | 4 |
|                                       | homogenous and homoge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nous kernel calculation                                                                                                                                                                                                                                                                                    | in SVM.                                                                                                                                                                                  | . <b>0</b>                                                                            | ~ | - |   | _ | - |
| 3A.                                   | Apply Genetic algorithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | to maximize the value of $\frac{1}{10}$                                                                                                                                                                                                                                                                    | t the function $f(x) = -x^2$ -                                                                                                                                                           | + $2x$ . Given                                                                        | 5 | 2 | 3 | 2 | 5 |
|                                       | 0.4, 0.15, 0.7 and 0.9. Se best value for a function a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lect the crossover betw<br>fter two iterations.                                                                                                                                                                                                                                                            | een first and fifth digits. De                                                                                                                                                           | etermine the                                                                          |   |   |   |   |   |
| <b>3B.</b>                            | Discuss the applications of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | of Genetic Algorithms (                                                                                                                                                                                                                                                                                    | GAs) in the fields of enginee                                                                                                                                                            | ering design                                                                          | 3 | 2 | 1 | 1 | 5 |
|                                       | and computer-aided mole<br>using GAs in these areas<br>addressed using this appro-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ccular design. Discuss t<br>s, and provide example<br>bach.                                                                                                                                                                                                                                                | the challenges and potential<br>es of specific problems that                                                                                                                             | benefits of<br>have been                                                              |   |   |   |   |   |
| 3C.                                   | Explain the concept of examine it affects the bala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | "inertia weight" in Parance between exploration                                                                                                                                                                                                                                                            | rticle Swarm Optimization<br>on and exploitation in the alg                                                                                                                              | (PSO) and gorithm.                                                                    | 2 | 2 | 1 | 1 | 4 |
| 4A.                                   | Consider a neural networ<br>The input layer has 3 neural networ<br>The input layer has 3 neural neurons. The activation fur-<br>function.<br>Suppose we have a training<br>corresponding target output<br>The weights and biases of<br>1. Input to Hidden<br>$W_{ih} = \begin{bmatrix} 0.1 & 0.2 \\ 0.2 & 0.3 \\ 0.3 & 0.4 \end{bmatrix}$ 3. Hidden layer bia<br>$\boldsymbol{b}_{h} = \begin{bmatrix} 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \end{bmatrix}$ 3. Hidden to output<br>$\boldsymbol{W}_{ho} = \begin{bmatrix} 0.5 & 0. \\ 0.6 & 0. \\ 0.7 & 0. \\ 0.8 & 0. \end{bmatrix}$ 4. Output Layer W<br>$\boldsymbol{b}_{o} = \begin{bmatrix} 0.5 \\ 0.6 \end{bmatrix}$ The network uses the mean<br>Perform one step of back using stochastic gradient of the state | htte between explorate<br>k with one input layer,<br>rons, the hidden layer h<br>inction used in both the<br>ng example where the i<br>ut is [0.4, 0.7].<br>The neural network are<br>Layer Weights:<br>2 0.3 0.4<br>0.4 0.5<br>0.5 0.6<br>ses:<br>1t layer weights:<br>6<br>7<br>8<br>9<br>9<br>//eights: | loss function for training.<br>e the weights and biases of the same and biases of the same set of 0.1.                                                                                   | the network                                                                           | 5 | 3 | 1 | 2 | 5 |
| 4B.                                   | A data scientist working for a cybersecurity firm, tasked with developing a machine learning model to detect malicious network traffic and prevent cyberattacks. After considering various algorithms, you decide to use Random Forest due to its ability to handle high-dimensional data and provide robust classification performance. Anticipate the drawbacks occurred as you deploy and evaluate the Random Forest model in a real-world cybersecurity environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                          |                                                                                       |   | 3 | 1 | 2 | 6 |
| 4C.                                   | Imagine, you're developi<br>banking system. The neur<br>(representing transaction<br>neuron indicating whethe<br>applicability of backprop<br>network, considering fa<br>computational efficiency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ng a neural network for<br>al network architecture<br>features), one hidden<br>r the transaction is frau-<br>pagation and reinforce<br>ctors such as data ar                                                                                                                                               | or detecting fraudulent trans-<br>includes one input layer with<br>layer with 30 neurons, and<br>dulent or not. Compare and<br>ement learning in training<br>vailability, feedback mech- | actions in a<br>50 neurons<br>one output<br>contrast the<br>this neural<br>anism, and | 2 | 3 | 1 | 2 | 5 |

| 5A. | A robot is navigating through a grid-based environment to reach its destination. The grid<br>consists of obstacles and open spaces, and the robot needs to make decisions at each grid<br>cell to determine its next move. You decide to use a decision tree classifier with the Gini<br>index as the splitting criterion to assist the robot in path planning.<br>Given a sample dataset containing the following features and labels:<br>Evaluate the Gini index for each feature and determine the optimal feature and split point<br>for the root node of the decision tree based on the provided dataset: Pictorially represent<br>the final decision tree for the given dataset under table 1.                                                                                               |              |                     |                    |           |                                                       | 5 | 4 | 3 | 2  | 5 |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------|--------------------|-----------|-------------------------------------------------------|---|---|---|----|---|
|     | Grid Cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Obstacle     | Terrain Type        | Visibility         | Action    |                                                       |   |   |   |    |   |
|     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Clear path   | Open Space          | Clear              | Move      |                                                       |   |   |   |    |   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F            | • F • • • F • • • • |                    | Forward   |                                                       |   |   |   |    |   |
|     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Solid Rocks  | Rough Terrain       | Partially Obscured | Turn Left |                                                       |   |   |   |    |   |
|     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Water bodies | Obstacle            | Obscured           | Stop      |                                                       |   |   |   |    |   |
|     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Clear path   | Open Space          | Clear              | Move      |                                                       |   |   |   |    |   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                     |                    | Forward   |                                                       |   |   |   |    |   |
|     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Solid rock   | Rough Terrain       | Partially Obscured | Turn      |                                                       |   |   |   |    |   |
|     | Right                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                     |                    |           |                                                       |   |   |   |    |   |
| 5B. | In the field of healthcare robotics, you've been tasked with designing a robotic system to<br>assist elderly individuals with daily living activities in nursing homes. The robotic system<br>is intended to provide support with tasks such as medication reminders, mobility<br>assistance, and social interaction. Your goal is to develop a user-friendly and effective<br>robotic solution that improves the quality of life for elderly residents while addressing<br>their unique needs and preferences.<br>Formulate the design procedures of robotic systems to be incorporated in a healthcare<br>robotics system to enhance the quality of life for elderly individuals in nursing homes,<br>considering factors such as user acceptance, autonomy, safety, and ethical considerations? |              |                     |                    |           | n to<br>em<br>lity<br>ive<br>ing<br>are<br>es,<br>ns? | 3 | 5 | 5 | 7  | 6 |
| 5C. | In a swarm robotics simulation, a neural network controller is trained using a genetic algorithm (GA). The genetic algorithm initializes a population of 50 neural network controllers with random weights and biases. Each controller is evaluated based on its performance in completing a specific task, and the top 20 controllers are selected for crossover and mutation. If the crossover rate is 0.7 and the mutation rate is 0.1, determine the number of offspring produced in the next generation.                                                                                                                                                                                                                                                                                      |              |                     |                    |           |                                                       | 2 | 5 | 3 | 17 | 5 |