Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

II SEMESTER M.TECH (POWER ELECTRONICS & DRIVES) END SEMESTER EXAMINATIONS, APRIL-MAY 2024

POWER ELECTRONICS IN MODERN POWER SYSTEM [ELE 5213]

REVISED CREDIT SYSTEM

Time: 3 Hours		Date: 03 May 2024	Max. Marks: 50		
Instructions to Candidates:					
•	Answ	er ALL the questions.			
•	Missir	ng data may be suitably assumed.			
1A.	Deriv when symn	e the expressions for midpoint voltage, current and a shunt capacitor is connected at the midpoint of a lo netrical transmission line.	power ossless	(03)	
1B.	Comp the fo prope	pare series compensation with shunt compensation reg ollowing (i) Rating (ii) Power flow capability and (iii) Cos er justification.	arding t. Give	(03)	
1C.	With contr (i)ma	the help of block diagram & explanation, implement a oller to aintain the bus voltage constant	an SVC		
	(ii) w to da	hat modifications must be done for case(i) if it is also re mp power oscillations.	quired	(04)	
2A.	With in the	neat diagrams and waveforms, analyze the operation o e capacitor vernier mode of operation.	f TCSC	(03)	
28.	Deriv when lossle STAT Pm=9 throu	The expression for midpoint voltage, current and a STATCOM is connected at the midpoint of a symmetry transmission line. The power flow through the line COM at the midpoint of the line is give $940\sin\delta+37\sin(\delta/2)$ MW. Calculate the maximum power of the line	power netrical with a n by er flow	(07)	
3A.	A nor suppl i(t)=2 (i)De (ii)Co react	nlinear load is connected to a balanced, sinusoidal, 1 ly voltage of 240 V. The load current is given by 2+10sinωt+2sin5ωt+0.5sin7ωt. termine the total harmonic distortion of the load current ompute the power factor, apparent power, active pow ive power of the load.	-phase nt. er and		
	I(iii) THD	If a linear load is connected across this load, comment of total current.	on the	(04)	

- 3B. With neat phasor diagrams, compare the following methods of DVR voltage injection i) Pre-sag compensation, ii) In-phase injection & iii) minimum energy injection clearly stating the load condition under which they can be used. Consider a distribution system with feeder impedance 0.01+j0.2 pu and load impedance 0.75+j0.3 pu connected in series with a supply voltage 220V, 50Hz. Compute the DVR voltage if the load voltage is to be brought to 220V using minimum energy compensation.
- 4A. With a neat block diagram, explain the generation of compensating signals using synchronous reference frame theory in a shunt active filter.
- **4B.** With neat waveforms & circuit diagram, derive an expression for dc output voltage of a 3-phase, 6-pulse bridge converter with firing angle. Ignore the effect of source inductance. (03)
- 4C. A 3-phase, 48-pulse bridge rectifier is fed from a transformer with transformation ratio 0.45 and primary voltage 220 kV. Determine (i) the output voltage of rectifier when firing angle is 20° and extinction angle is 40° (ii) fundamental component of ac line current, commutation resistance, power factor, active and reactive power at primary side of transformer if the dc current is 1.7 kA. (04)
- 5A. A 3-phase, 12-pulse bridge rectifier is fed from a transformer with transformation ratio 0.5 has a dc output voltage of 270 kV when the firing angle is 18°. The commutation resistance/6-pulse bridge=6 Ω and the dc line current is 2 kA. The rectifier is initially operating in CC mode. The current margin=15% and the minimum limiting value of a is 5°. Compute the dc output voltage when the rectifier HT bus voltage drops by (i) 5% and (ii) 15%. Comment on the results obtained.
- 5B. With neat diagrams, discuss various power configurations of PV inverter. (05)

Page 2 of 2

(05)

(06)

(03)