Question Paper

Exam Date & Time: 29-Apr-2024 (02:00 PM - 05:00 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

Manipal School of Information Sciences (MSIS), Manipal
Second Semester Master of Engineering - ME (Artificial Intelligence and Machine Learning / Big Data Analytics) Degree Examination - April / May 2024

Advanced Applications of Probability and Statistics [AML 5201]

Marks: 100 Duration: 180 mins.

Monday, April 29, 2024

Answer all the questions.

[10 points] [L3, CO3] Consider the following data matrix X:

(10)

(10)

	HR	BP	Temp
Patient-1	76	126	38.0
Patient-2			
Patient-3	72	118	37.5
Patient-4	78	136	37.0

Calculate the following quantities:

- (a) mean-centered heart rates;
- (b) standardized heart rates;
- (c) mean-centered blood pressures;
- (d) standardized blood pressures;
- (e) covariance between heart rate and blood pressure;
- (f) correlation between heart rate and pressure and interpret the result.
- [10 points] [L5, CO2] Consider a dataset with 4 features with the following associated quantities:
 - the mean sample $\mu = \begin{bmatrix} 8 \\ 6 \\ 4 \\ 12 \end{bmatrix}$;
 - the sample covariance matrix $S = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1/4 & 0 & 0 \\ 0 & 0 & 1/8 & 0 \\ 0 & 0 & 0 & 1/16 \end{bmatrix}$.

Answer the following questions:

- (a) Which feature has the smallest mean?
- (b) Justify whether the features are correlated or not.
- (c) How would a scatter plot between the 1st and the 4th features of the data look like? Justify your plot briefly.

3)

[10 points] [L5, CO2] Consider a classification model that separates passengers at an international airport checkpoint into two categories: "carrying dangerous items" or "not carrying dangerous items." Answer the following questions regarding precision and recall (a.k.a. sensitivity or true positive rate):

- (a) Which is a more relevant performance metric in this case: recall or precision? Justify briefly why.
- (b) Increasing the classification threshold generally increases/decreases FP.

choose one

(c) When the classification threshold increases, precision

probably increases/probably decreases/definitely increases/definitely decreases .

choose on

- (d) Keeping in mind that TP + FP + TN + FN = n, which is the number of samples, when the classification threshold is increased, what happens to the quantity TP?
- (e) When the classification threshold is increased, the quantities TN and FN both

uniformly/non-uniformly increase/decrease.

(f) Decreasing the classification threshold generally increases/decreases FN.

choose one

(g) When the classification threshold is decreased, recall

probably increases/probably decreases/definitely increases/definitely decreases.

choose on

(h) When the classification threshold is decreased, the quantities TP and FP both

$$\underbrace{\text{uniformly/non-uniformly}}_{\text{choose one}} \underbrace{\text{increase/decrease}}_{\text{choose one}}$$

[10 points] [L3, CO2] Consider the data matrix

(10)

$$X = \begin{bmatrix} 5 & 4 \\ 2 & 3 \\ 1 & 0 \\ 4 & 1 \end{bmatrix}.$$

- (a) Calculate X_m, the mean-centered version of X.
- (b) Calculate $\frac{1}{4}X_m^TX_m$. What does this matrix represent?
- (c) Project the samples onto the direction $u = [-1, 1]^T$. Show the projections graphically.

5)

[10 points] [L3, CO2] At the beginning of the 20th century, one researcher obtained measurements on seven physical characteristics for each of 3000 convicted male criminals. The characteristics he measured are:

 X_1 : length of head from front to back (in cm.)

 X_2 : head breadth (in cm.)

 X_3 : face breadth (in cm.)

 X_4 : length of left forefinger (in cm.)

 X_5 : length of left forearm (in cm.)

 X_6 : length of left foot (in cm.)

X₇: height (in inches)

The sample correlation matrix, eigenvalues, and eigenvectors of the sample correlation matrix are shown below:

	X_1	X_2	X_3	X_4	X 5	X_6	X_7
X_1	1	0.402	0.395	0.301	0.305	0.399	0.340
X 2	0.402	1	0.618	0.150	0.135	0.206	0.183
X_3	0.395	0.618	1	0.321	0.289	0.363	0.345
X_4	0.301	0.150	0.321	1	0.846	0.759	0.661
X,	0.305	0.135	0.289	0.846	1	0.797	0.800
X 6	0.399	0.206	0.363	0.759	0.797	1	0.736
X_7	0.340	0.183	0.345	0.661	0.800	0.736	1

	1	2	3	4	5	6	7
	.285	351	877	088	076	.112	023
	.211	643	246	.686	098	010	.020
Eigenvectors	.294	515	387	693	112	.029	074
	.435	.240	113	.126	604	.330	.500
	.453	.282	079	.127	024	.270	787
	.453	.167	.028	.023	065	873	.024
	.434	.182	027	090	.776	.208	.352
Eigenvalues	3.82	1.49	0.65	0.36	0.34	0.23	0.11

- (a) Head breadth has the highest correlation with which feature?
- (b) What proportion of variance is explained by the second principal component?
- (c) How many minimum principal components are needed to explain more than 95% of the variance in the data?
- (d) Which features are negatively loaded for calculating the 2nd principal component score?

- (e) Which principal component assigns the least weight (in magnitude) to head breadth?
- (f) The 5th principal component assigns a maximum weight (in magnitude) to ______.
- (g) Give a brief English interpretation of the second principal component.
- 6) [10 points] [L2, CO1] A multiple linear regression model for predicting house price (in dollars) as a function of living area (square feet) and (10) type of fuel used for heating (a categorical variable) is built as follows:

```
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)
             8411.608
                        5538.298
                                          0.12899
                                  39.590
livingArea
             110.231
                                           < 2e-16
            14630.007
                        4530.883
                                   3.229
                                           0.00127
fuelgas
             -252.581
fueloil
                        6111.020
Residual standard error: 68830 on 1724 degrees of freedom
                                Adjusted R-squared:
F-statistic: 602.8 on 3 and 1724 DF, p-value: < 2.2e-16
```

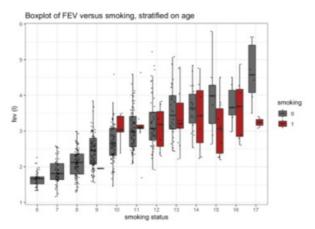
- (a) What is the name of the categorical variable before dummy encoding?
- (b) How many levels does the categorical variable have?
- (c) Identify the reference level for the categorical variable (pick one): solar, thermal, motor, electric, generator, wind, tidal.
- (d) What are the non-reference levels of the categorical variable?
- (e) What is the predicted house price of a gas-heated house?

7)

[10 points] [L5, C01] A simple linear regression model for how much air (in liters) a child can forcefully exhale from the lungs, referred to as the forced exhalation volume (FEV), as a function of smoking habit (no/yes) is built as follows:

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)


(Intercept) 2.56614 0.03466 74.037 < 2e-16 ***
smokeyes 0.71072 0.10994 6.464 1.99e-10 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8412 on 652 degrees of freedom
Multiple R-squared: 0.06023, Adjusted R-squared: 0.05879
F-statistic: 41.79 on 1 and 652 DF, p-value: 1.993e-10
```

According to this model, who has a greater FEV generally – smokers or non-smokers? Is the conclusion intuitively meaningful? Justify your answer briefly. You may use the following plot where the data is stratified based on age to answer this question:

8) [10 points] [L5, CO3] Consider the following data matrix where the feature Gender has 2 levels (female / male) and the feature Education (10) has 4 levels (high school/ college/ post-graduate/ doctorate):

Age	Gender	Education
26	male	college
32	female	college
28	female	post-graduate
27	male	doctorate
25	male	high school

26	iemaie	high school
27	female	post-graduate

Numerically justify who the 1st sample (the 26 year old male) is most similar and most dissimilar to.

9)

[10 points] [L5, CO1] Suppose we want to study the effect of **Smoking** on the 10-year risk of heart disease. The table below shows the summary of a logistic regression model for predicting the risk of contracting heart disease using **Smoking** as a predictor:

	Coefficient	Standard Error	p-value
Intercept	-1.93	0.13	<0.001
Smoking	0.38	0.17	0.03

Interpret the Intercept and the coefficient for Smoking in terms of odds and probabilities of contracting heart disease if:

- (a) Smoking is a binary variable (no/yes);
- (b) Smoking is a numerical variable (lifetime usage of tobacco in Kilograms);
- (c) Smoking is an ordinal variable (0: non-smoker, 1: light smoker, 2: moderate smoker, 3: heavy smoker).

10) [10 points] [L3, CO4] Using a practical example, briefly explain what autocorrelation is and how it can be used to analyze time series data. (10)

----End-----