Question Paper

Exam Date & Time: 03-Jun-2024 (10:00 AM - 01:00 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

Manipal School of Information Sciences (MSIS), Manipal Second Semester Master of Engineering - ME (VLSI Design / Microelectronics and VLSI Technology) Degree Examination (Makeup Exam) - June 2024

Advanced VLSI Design [VLS 5201]

Marks: 100 Duration: 180 mins.

Monday, 03 June 2024

Answer all the questions.

a) Explain the effect of Temperature and Voltage on CMOS Resistor. (06 marks)	(10)
b) Estimate the minimum and maximum resistance of an n-well resistor with a length of 100 μ m and a width of 10 μ m over a temperature range of 0 to 100°C. [Data Given: TCR = 10,000ppm/°C; N-well sheet resistance = 2K Ω to 3K Ω /square] (04 marks)	
Write a note on different SPICE and BSIM MOSFET models. Explain a few important parameters used by them.	(10)
Draw and explain the circuit of Cascode current mirror and show that output resistance of the n-stage cascode current mirror $R_{o(n)} = r_o(1+g_mR_{o(n-1)}) + R_{o(n-1)}$, where r_o is output resistance of all the MOSFETs, g_m is the transconductance of all the MOS used in the circuit.	(10)
With a diagram, explain cascode current mirror. List its advantages over a simple current mirror?	(10)
Show how can we maximize the voltage gain of a CMOS Common-Source amplifier with passive resistor load? Illustrate the different trade-offs that should be done. Obtain the expression for the gain considering channel-length modulation.	(10)
With the help of a small-signal equivalent circuit, develop an expression for $A_{\rm v}$ for a CMOS Common-Gate amplifier with passive resistor load. Assume finite output impedance, r_0 and signal source impedance $r_{\rm s}$.	(10)
Describe a Common Mode Range (CMR) of a differential amplifier? Explain, with diagram, how do you measure it?	(10)
Explain charge injection and clock feedthrough in a MOSFET switch? Discuss a method used to reduce their effect.	(10)
Discuss the different errors that occur in a Sample-and-Hold circuit.	(10)
Develop expressions for $ INL _{max}$ and $ DNL _{max}$ for a simple Resistor string DAC.	(10)
	b) Estimate the minimum and maximum resistance of an n-well resistor with a length of 100 μ m and a width of 10 μ m over a temperature range of 0 to 100 °C. [Data Given: TCR = 10,000ppm/°C; N-well sheet resistance = 2K Ω to 3K Ω /square] (04 marks) Write a note on different SPICE and BSIM MOSFET models. Explain a few important parameters used by them. Draw and explain the circuit of Cascode current mirror and show that output resistance of the n-stage cascode current mirror $R_{O(n)} = r_O(1+g_mR_{O(n-1)}) + R_{O(n-1)}$, where r_O is output resistance of all the MOSFETs, g_m is the transconductance of all the MOS used in the circuit. With a diagram, explain cascode current mirror. List its advantages over a simple current mirror? Show how can we maximize the voltage gain of a CMOS Common-Source amplifier with passive resistor load? Illustrate the different trade-offs that should be done. Obtain the expression for the gain considering channel-length modulation. With the help of a small-signal equivalent circuit, develop an expression for A_v for a CMOS Common-Gate amplifier with passive resistor load. Assume finite output impedance, r_O and signal source impedance r_S . Describe a Common Mode Range (CMR) of a differential amplifier? Explain, with diagram, how do you measure it? Explain charge injection and clock feedthrough in a MOSFET switch? Discuss a method used to reduce their effect. Discuss the different errors that occur in a Sample-and-Hold circuit.

-----End-----